Design and Implementation Issues of Multimedia
Digital Classroom and Academic Information System

for aVirtual Univerdty

D82506014

Java

(1)

(2)

(3)
RMI

JDK1.1

Design and Implementation Issues of Multimedia
Digital Classroom and Academic Information System

for aVirtual Univerdity

Student: Shiuh-Sheng Yu

Advisor: Professor Wen-Chin Chen

Department of Computer Science and Information Engineering,
National Taiwan University, Taipel, Tawan, R.O.C.
May 1999

Abstract

The university education in the last decade of the twentieth century faces escal at-
ing costs, uneven demographics, and administration inefficiency. The university educa-
tion must become more productive to solve these problems. This productivity advance
cannot be achieved wholly through the traditional approach of reducing the inputs, but
also through greater attention to the learner.

In this dissertation, we will investigate technical issues on multimedia digital
classroom and academic information system implemented in Java. A virtua university
based on these two systems can aleviate or even solve the problems of current univer-
sity education by providing a networked learning and information retrieval environment.
Our major contributions can be described in three aspects:

(1) A hybrid application-sharing model of event sharing and distributed object to
support different interaction patterns in learning environment. Activities in
learning environment include presentation, discussion and examination. These
activities can be classified as single-input-multiple-views, multiple-inputs and
local-view. Our hybrid model can combine applications with different interac-
tion patterns transparently in a hierarchical manner.

(2) Various tools based on our proposed application-sharing model to support
distance learning. Multimedia browser, audio conference, shared whiteboard
and chat room has been implemented to construct a multimedia digital class-
room.

(3) A high performance, easy to use, low cost and scalable academic information
system. The system uses a RMI based three-tier architecture to explore any op-
timization techniques. Miscellaneous functionality has been provided to sup-
port daily academic information.

Our implementation is based on JDK1.1 and has been deployed in real world

cases.

Contents

CHAPTER 1 INTRODUCTION ...ccoiiiiiiririreresesesesesesesesesesesesesesesesesssssesssesesesssssssssssessssssssssssssssssssnsnes 1

1.1 MOTIVATION AND BACKGROUND......cviiiiiiitti ettt ettt s sbe s sab e s st e s sabsssbnssabessabessnnas 1

1.2 THE ARCHITECTURE OF MULTIMEDIA DIGITAL CLASSROOM AND ACADEMIC INFORMATION

SYSTEM FOR A VIRTUAL UNIVERSITY ...viitiiiiitictscesstesessessbestssaessbesasssaesssesssssassssssnsssassssesasssnes 5

1.3 ORGANIZATION OF THE THESIS. .. uiictiieeitietistesstesstsssessbestssaessbessssaessbessssssssssessssssssssesssssssssesssesns 8
CHAPTER 2 APPLICATION SHARING FRAMEWORKS ... 9
2.1 INTRODUCTION .. uceitiiittstesstieetsssesstessssssesssesssssasssbesssssasssbessssasssbessbesasssbessbesasssbessbesasssrnssbesasssrnnssesn 9
2.2 EVENT-SHARING SYSTEM ..oitiiitiiticeestietscesste st saessbe st saessbesatssaessbesatssaessbssasssaeasbesasssaesssesasssnns 13
2.3 APISFOR DISTRIBUTED OBJIECTS ... uviitiitiiessteestsssesstesssssesssesssssesssssssssssssssssssssssssesssssssssesssssnes 18
CHAPTER 3TOOLSFOR MULTIMEDIA DIGITAL CLASSROOMcoooiieiieeseee e 21
3.1 INTRODUCTIONceetiiueesteestesesstessssssesstesssssaessbessssaessbesasssassssesasssaesssessssressbesasssasasbesasssressbesasssans 21
3.2 DESIGN OF TOOLSFOR MULTIMEDIA DIGITAL CLASSROOM ...cuviiuieieeieseee e sessessiesnssresssesnsssas 21
3.3 IMPLEMENTATION OF TOOLSFOR MULTIMEDIA DIGITAL CLASSROOMcecveieiiieereeessressresessnes 24
3.4 DISCUSSIONS.viiticeeestiestesesstesssssaessbesssssaessbesasssaeasbesasssaessbesasssaessbesasssaeesbesaessae e besabssreabesasssaes 28
CHAPTER 4 ACADEMIC INFORMATION SYSTEM ..ottt 30
2.1 INTRODUGCTION ... ttetieutesteestesesssesssessesssessssassssesssssasssbesssssasssbesssssasssbessssasssbesssssssssessssnnsssnssseses 30
4.2 SYSTEM DESIGN AND IMPLEMENTATION ..viiuveitietiieeessiestesesssesssssssssessssssssssessssssssssessssssssssesssesns 31
4.3 PERFORMANCE ANALY SIS ..o cutiitiitiiessteetssesstesstssasssbestssasssbesssssasssbesstssasssbessssssssssessssssssssnsssesns 32
4.4 PERFORMANCE OPTIMIZATION 1eeiutiiteitietierssseestssssssesssssssssesssssssssesssssssssesssssssssesssssssssesssesns 34
4.5 WORKAROUND BUGSINJIDK L L ..ottt sttt s s st saes s st sanssbe st snnssbe s b e 40
CHAPTER 5 CONCLUSIONSAND FUTURE WORK. ...ttt s 44
5.1 CONCLUSIONSeiitiieestieetesesstesstsssessbestsssessbessssaessbesasssaessbesasssaessbesasssasesbesasssaeasbesatssreabesarssres 44
D2 FUTURE WORKS ...ttt sttt sttt s e s es b st s he s b s assae s s besats s et s s besatssaeasbesatssaeesbesaessae e besatssreabesarssrns 45
BIBLIOGRAPHY .ttt sttt sttt st st e s as st s b e s bsshe s besatssbe s bssatssbesbesanesrnssbesns 46
APPENDIX A FUNCTIONALITY OF ACADEMIC INFORMATION SYSTEM........ccceue.. 52
A.1 SERVER SIDE INTERFACE DEFINITIONS.. ..cctiiitiiteetecteseestestssressbesssssssssssssssssessssssssssssssssssssnsssens 52
YA AN = = 1 =l = U] Nt 1) N LSRR 57
APPENDIX B DATA ANALYSISOF ACADEMIC INFORMATION SYSTEM........cccceeue.. 66
B.1 E-R DIAGRAM oottt sttt st s et s te e be s tesae st s satsshesbssassshesabssaeesbessbssanesbesabssanssbesssssnnssrean 66
B.2 RELATIONAL DATABASE SCHEMA ...viitiitieeticte st esteses st stssessaessbssaessbessbssaassbessbssanssbessssnnsssess 67

List of Figures

Figure 1-1. Multimedia digital classroom and academic information system for avirtual

01TV £ S 6
Figure 1-2. The architecture of a multimediadigital classroom.cccccceieiiiinennnne 6
Figure 1-3. The architecture of an academic information system.cccceevveveveereennns 7
Figure 2-1. The request-sharing MOEcoiiriiiieiene e 10
Figure 2-2. Theimage-sharing MOAEcccevieie e 11
Figure 2-3. The event-sharing MOGE]ccooeiiriinieee e 12
Figure 2-4. The architecture of event propagation.............ccecevverereeseesesseeseesee e 14
Figure 2-5. Session SEtUP ProtOCOIcoeeiuiiiereriie e 14
Figure 2-6. Token management ProtOCOL...........c.ooveiereeieecie e e 15
Figure 2-7. A GUI hierarchy example...........cocoviriiienineeee e 16
Figure 2-8. Control flow of event interception and playback.ccccceevvveivecnennene 17
Figure 2-9. Modify single use application to distributed model. Only the event listener

ismodified and acommand listener isadded.cccvverrinieiininesenn 19
Figure 2-10. Container hierarchy of different components............cccoceveriineneninnene 20
Figure 3-1. Architecture of Multimedia Internet Browsercccceceveeieneeneccie s 22
Figure 3-2. The transmission of audio data uses the peer to peer moddl. 23
Figure 3-3. The transmission of control data uses the centralized model...................... 24
Figure 3-4. The Multimedia INternet BrOWSEYcoceverrieneeneerie e 25
Figure 3-5. Control panel of the Audio Conference..........cccecevvevecceveese e 26
Figure 3-6. Audio Conference Message Board...........ccooeevreeneeieneesieese e 27
Figure 3-7. Graphics Shared White Board.cccvceveeiiscesiecie e 28
Figure 4-1. The architecture of RMI based 3-tier information system.c.cccceveeene 31
Figure 4-2. Response time VS, WOrKIOad.cccvevevieieeiie e 34
Figure 4-3. Response time vs. workload for selectCourse operation.c.cceeeeuee 36
Figure 4-4. Response time vs. workload for queryCoursel operation.............ccecueeuee. 37
Figure 4-5. Response time vs. workload for queryCourseD operation............cccceuee.e. 37
Figure 4-6. Response time vs. workload for queryCourse3 operation.............cceeueeueee. 38
Figure 4-7. Response time vs. workload for queryCourse operation.............cceceeuee. 38
Figure 4-8. Response time vs. workload for queryCourse2 operation.............cccceeuee. 39
Figure 4-9. Response time vs. workload for listCourse operation.cccceveereeruenne 39
Figure 4-10. Response time vs. workload for queryScore operation............ccccceeeeeneee. 40

Figure 4-11. Response time vs. workload for stuLogin operation.ccoceveeeeeruenne 40

FIQUrE A-L. QUENY COUISE. ...ccuviiuieieeeesieesteeteeseesteetesseesseessesseesseesesseesseensesneesseensesneeses 58
FIQUIE A-2. QUENY SCOTE......coiuiuieieeiesieesiee e esee st e tesaeesteeee e e s beetesaeesaeeeesneesbeensesneees 59
Figure A-3. COUrSE SEIECHION.ccuieiecieceee et 60
Figure A-4. SChool tiMEtabIe..........coooiiiiiie e e 60
Figure A-5. Manage student personal information.............cceceeveveseenesseseeseesee e 61
Figure A-6. Change PassWOI.........cceeeeierienee et 61
Figure A-7. Course Managementceveerueeeereesieseesieeeeseesseessesseesaeensesseesseeneesneees 61
Figure A-8. INpUt SYHTADUS.ooiuiieeee e 62
Figure A-9. Query information about SSUJeNntSiN @ COUrSe...........coeveereereeeeenieeeeseeenns 62
Figure A-10. Mail t0 StUAENES IN @ COUMSE.........eeiuerierieesieeie e 63
Figure A-11. Query study status of studentsin the same departmert............ccccceeeeeeneee. 63
Figure A-12. Query ranks of StudentSin aSemeSLEr.........cccvveererrereereeiee e 64
Figure A-13. Query graduate rule of adepartment...........ccccveeeveeverieeseere e 65

List of Tables

Table 3-1. Comparison of audio transmisson methods (compression times,

decompression times, MIXiNG tIMES)cccueveereieereere e 23
Table 3-2. Development environment of MDC..........cooiiiiieiinieseeeeee e 24
Table 3-3. Meaning of various fields in the header of an audio packet. 26
Table4-1. Server Side CONfIQUIALIONS.coveerieriirieie ettt 33
Table 4-2. Operations and query complexity used in response time simulation. 33
Table 4-3. Query complexity of each smulated operation after optimization............... 35
Table 4-4. Response time and DB/RMI CPU load ratio of simulated operations after

(0] 01110 1172 (]! PSP 36
Table 5-1 Cost to support auniversity of 15000 StUJENtS..........ccceveerevieereereeeeeseene, 44
Table 5-2 Returns of academic information SyStem.ccoveevineneeneniee e 45

Chapter 1 Introduction

1.1 Motivation and Background

The university has been a place for education and research over centuries. The
traditional approach uses face-to-face interaction for teaching. To support this scenario,
we need the genera affair office to build and maintain campus; the academic affair of-
fice to administrate academic information; and the student affair office to manage stu-
dents. Other offices, such as library and computer center, are also required to support
educationa activities. Although a university has so many facilities and staffs, the stu-
dents have to live inside or near campus for daily courses, and the teachers need to
carry teaching materials to courses.

The university education in the last decade of the twentieth century faces escal at-
ing costs, uneven demographics, and administration inefficiency. The university educa-
tion must become more productive to solve these problems. This productivity advance
cannot be achieved wholly through the traditional approach of reducing the inputs, but
also through greater attention to the learner.

As the rapid development of Internet and computer systems, there are more and
more multimedia applications in markets. Some of these applications help geographi-
cally dispersed people working for their common goals [BUR91] [CRA92] [KUM94]
[CUT96] [KOU96]. As one of these applications, the distance learning plays an impor-
tant role of education popularization. It has been predicted that the distance learning
would be one of the most important commercial applications in next decade [MEL96].
It breaks the limitation of traditional courses so that teachers and students do not need
to be in the same classroom. These geographically dispersed teachers and students in
the digital classroom can learn and share knowledge with less effort and cost.

Currently, the Minister of Education of R.O.C. has adopted three ways to promote
distance learning:

® Broadcast video on TV. This approach currently has the greatest penetration,

but there is no interaction between teachers and students at all. Questing,
on-line practicing, and discussion are not possible in this environment. The

number of courses offered to the public is also limited by the available chan-

nels.

® Build videoconference rooms in universities, and provide distance courses
between these universities. This approach is expensive and hence not perva-
sive. Only students near a university with a conference room can attend
classes. The only interaction between teachers and students is through audio
conference. Due to current bandwidth limitation and compression techniques,
teaching materials can not be presented clearly on screen.

® Put learning materials on the WWW, and let students study themselves through

the Internet. This approach provides multimedia presentation, but lacks of in-
teraction. It alone can only be thought as an assistant method for distance
learning.

None of them is ideal to help people who can not attend the classes, and they do
not address the administration problem of current universities. We need new ap-
proaches to solve the problems of escalating costs and uneven demographics.

We define a virtua university as an educational environment on computer net-
work to support distance learning and administration. An idea virtua university
should obtain the educational quality of traditional face-to-face interaction method, and
be available to as many learners as possible. To achieve these goals, a virtua univer-
sity should have the following characteristics:

® A virtual university should support multimedia and different interaction pat-

terns in distance learning. Multimedia presentation, audio conference, on-line
practice, and shared whiteboard are essential tools for good presentation and
discussion.

® The software of a virtual university should support heterogeneous environ-

ments to cover learners on different platforms.

® The runtime environment of a virtua university should require very low net-

work bandwidth so that it can be accessed from as many users as possible on
the Internet.

® The architecture of a virtual university should be extendible for the require-

ments of evolving educational methods. Different media, applications, and
administration rules should be easily modified and added into a virtua uni-
versity to support the changing requirements of education and administration.

® Setting up the environment of a virtua university should be easy or even in-

volves no human intervention. This is essentia to let the virtua university
reach every potential user.

The implementation of a virtual university should have high performance, so
that current hardware can support universities of medium to large scale.

The cost of deploying avirtua university should be low so that most learners
are affordable.

The user interface of a virtua university must be intuitive and smart for rov-
ice users. Related functions should be put together to let users complete their

works asfast as possible.

Being robugt, secure, platform neutral, easy to use, easy to understand, and auto-

matically downloadable on a network, Java is a powerful tool for building the virtual

university environment. We use Java Development Kits (JDK) 1.1 to implement the

virtua university. Packages related to this thesis are explained as follows [JDK 98] for
better understanding:
® Remote Method Invocation (RMI). RMI enables the programmer to create

distributed Java-to-Java applications, in which the methods of remote Java
objects can be invoked from other Java virtual machines, possibly on differ-
ent hosts. A Java program can make a call on aremote object once it obtains a
reference to the remote object. A remote reference is obtained either by look-
ing up the remote object in the bootstrap-naming service provided by RMI, or
by receiving the reference as an argument or areturn value. A client can call a
remote object in a server, and that server can be a client of other remote do-
jectstoo. RMI uses Object Serialization to marshal and unmarshal parameters
and does not truncate types, supporting true object-oriented polymorphism.

Java Database Connectivity (JDBC). JDBC is a standard Java API for exe-
cuting SQL statements. It is easy to send SQL statements to virtually any rela-
tional database by using JDBC. In other words, with the JDBC AP, it isn' t
necessary to write one program to access a Sybase database, another program
to access an Oracle database, another program to access an Informix database,
and so on. One can write a single program using the JDBC API, and the pro-
gram will be able to send SQL statements to the appropriate database. With
an application written in the Java programming language, one doesn’ t have to

worry about writing different applications to run on different platforms. The

combination of Java and JDBC lets a programmer “write it once and run it
anywhere”. Ingallation and version-control are greatly smplified. A pro-
grammer can write an application or an update once, put it on the server, and
everybody has access to the latest version.

Object Serialization. Object Serialization extends the core Java Input / Output
classes with support for objects. Object Serialization supports the encoding
of objects and the objects reachable from them into a stream of bytes. It also
supports the complementary reconstruction of the object graph from the stream.
Seridization is used for lightweight persistence and for communication via
sockets or RMI. The default encoding of objects protects private and transient
data, and supports the evolution of the classes. A class may implement its
own external encoding and is then solely responsible for the externa format.
Abstract Window Toolkit (AWT). The AWT consists of APIs responsible for
building the graphical user interface (GUI) for Java programs. JDK 1.1 uses a
peer model to provide a truly native look-and-feel by delegating the
look-and-fedl of the components to a set of underlying “peer” classes. Each
platform has a different set of peer classes to wrap the native system’ s wid-
gets. Java programs use these peer classes to output graphical commands to
the underlying window system. Event types are encapsulated in a class hier-
archy rooted at java.util.EventObject. An event is propagated from a
“Source” object to a “Listener” object by invoking a method an the listener
and passing in the instance of the event subclass which defines the event type
generated. A Listener is an object that implements a specific EventListener
interface extended from the generic java.util.EventListener. An EventLi stener
interface defines one or more methods, which are to be invoked by the event
source in response to each specific event type handled by the interface. An
Event Source is an object that originates or “fires’ events. The source defines
the set of events it emits by providing a set of set<EventType>Listener (for
single-cast) and/or add<EventType>Listener (for multi-cast) methods which
are used to register specific listeners for those events. The event source is
typically a GUI component and the listener is commonly an “adapter” object
that implements the appropriate listener (or set of listeners) in order for an

application to control the flow/handling of events. The listener object could

also be another AWT component that implements one or more listener inter-
faces for hooking GUI objects up to each other.

® Java Native Interface (JNI). The NI is a native programming interface. It d-
lows Java code that runs inside a Java Virtual Machine (VM) to inter-operate
with applications and libraries written in other programming languages, such
as C, C++, and assembly. The most important benefit of the NI is that it im+
poses no restrictions on the implementation of the underlying Java VM.
Therefore, Java VM vendors can add support for the JNI without affecting
other parts of the VM. Programmers can write one version of a retive appli-
cation or library and expect it to work with all JavaVMs supporting the JNI.

® Reflection. The Java Core Reflection API provides a small, type-safe, and
secure API that supports introspection about the classes and objects in the
current Java Virtual Machine. If permitted by security policy, the API can be
used to construct new class instances and new arrays, access and modify
fields of objects and classes. It can also be used to invoke methods on objects
and classes, access and modify elements of arrays, and reflect information

about the underlying member or constructor.

1.2 The Architecture of Multimedia Digital Classroom and
Academic Information System for a Virtual University

Building a virtua university with al the characteristics mentioned in section 1.1
on Java is challenge. This thesis describes the design and implementation of two sys-
tems for avirtual university. One of the systems is a multimedia digital classroom sup-
porting distance learning, the other is an academic information system supporting al-
ministration. We expect these two systems can enhance the productivity of a university
and let the public attend classes through the Internet. Figure 1-1 shows the relationships

between different roles of users and these two systems.

Multimedia
Students Digital
Classroom

Academic
Information
System

Figure 1-1. Multimediadigita classroom and academic information system for a virtual
university.

The architecture of the multimedia digital classroom is shown in Figure 1-2. There
can be many dgital classrooms at the same time. All available classrooms register
themselves to the classroom server, such that users can discover active classrooms
from the classroom server. Each classroom consists of one teacher and many students.
Each user uses the client software to perform educational activities. The client software
should provide tools such as a multimedia Internet browser, an audio conference, and a
shared whiteboard for material presentation and on-line discussion. All these tools are
based on the underlining share manager to do application sharing, communication, syn-

chronization, and access control.

ultimedia Classroom

Internet
Browser Classroom
Client

ShareManager

Classroom Client

.
Classroom
DBMS Server

Figure 1-2. The architecture of amultimediadigita classroom.

Major issues about the design and implementation of multimedia digital classroom
addressed in thisthesis are:

® How to share different applications between teachers and students to provide

better interaction. These applications provides various interaction patterns
such as single-input-multiple-view, multi-input and local-view-only for dis-
tance learning.

® How to reduce network bandwidth requirement and still support multimedia

presentation, audio conference and whiteboard to users from modem.

® How to design an extendible architecture to adapt new media and presentation

methods.

The architecture of the academic information system is shown in Figure 1-3. Each
user is served by a personalized agent to access academic information. The academic
information system should support daily academic activities, such as:

® Query information and statistic of courses opened in each semester;

Select and drop courses in a specific period of a semester;
Automatically select mandatory courses for students;
Update persona contact information;

Query student information of a particular class;

Send mail to students of a class,

Query higtoric study status of a particular student;

Query the scores of a student for a particular semester;

Query the class time table of a student for current semester;

Input score and syllabus of aclass.

Teacher Academ_ic
Infor mation
Agent System

Teacher

Public

Figure 1-3. The architecture of an academic information system.

Major issues about the design and implementation of academic information system
addressed in thisthesis are:

How to select coursesin most efficient way to save everybody’ stime;
How to provide instant information for everyone;
How to provide sub-second response time in contemporary hardware;

How to build a scalable system to support thousands of accesses in an hour;

How to reduce the cost of development, deployment, administration and

maintenance.

1.3 Organization of the Thesis

This thesis contains five chapters. Chapter 2 discusses the application sharing
frameworks on Java. The Chapter proposed an application-sharing framework allowing
single-user Java applications to be shared on network without modification, and a set
of easy-to-use APIs for quickly writing complex cooperative applications. The hybrid
of these two methods results a framework to build distance learning applications with
different interaction patterns. Chapter 3 implements a multimedia digital classroom
based on the work of Chapter 2. The digital classroom uses an extendible architecture
to accommodate evolving teaching applications to support distance learning. It now
consists of a multimedia browser, an audio conference, and a shared white board.
Chapter 4 describes an academic information system on a Java-based three-tier archi-
tecture. The academic information system provides functions supporting academic ad-
ministration activities of a university. The academic information system also shows
great performance feasible for a large university. Conclusions and future works are

given in Chapter 5.

Chapter 2 Application Sharing Frameworks

2.1 Introduction

There are two views about how to realize a CSCW (Computer Supported Coop-
erative Work) environment [MIN95]. One is based on the model of interaction between
distributed objects [ITU95]. Although this distributed-objects model provides the most
powerful mechanism to build complex cooperative applications, it usually requires
building cooperative applications from scratch. This approach is too complex and ex-
pensive to make itself pervasive.

The other model is an application sharing system based on single-user applica-
tions. Running single-user applications on an application sharing system automatically
makes these applications cooperative, with a user control the applications at any time.
It is a bridge between the single-user applications and the environments of CSCW. This
approach is cheap and intuitive, but its runtime environment limits the concurrent inputs
from users.

There are three models concerning the architecture of application sharing systems,
names request-sharing, image-sharing and event-sharing. In the request-sharing
model, an application is started on a server and its graphical outputs are multiplexed to
all the participants window systems. The events from the window system holding the
token are passed to the application, and al other window systems’ inputs are blocked.
Figure 2-1 shows the scenario of the request-sharing model.

< Application >

A
Command i Event
v H
Command Event
Intercepter Repproducer
4
»| Share Manager =+ | Share Manager —l

[Wi n(;Iow System]
Application Application
Provider Sharer

Figure 2-1. The request-sharing model

This model is able to share any single-user applications, and has been adopted in
several commercia products and academic projects [ADB94][SHI96]. Although his
model is quite successful, it can not support many users in heterogeneous environments
due to the following reasons:

® Since the graphica outputs are duplicated to every session participants, this

model consumes tremendous network bandwidth. This phenomenon is even
worse for multimedia applications.

® The system is responsible for trandating graphical outputs for different hard-

ware configurations, e.g. different color models and resolutions. This tranda-
tion also consumes much CPU time.

® |tisdifficult to trandate graphical commands between different window sys-

tems.

Due to these performance and implementation problems, the request-sharing sys-
tem can only support a session with several participants in a homogeneous environment
[MIN94]. It cannot be scaled up for alarge conference or an educational environment.

In theimage-sharing model, an application is started on a server and its graphical
image is periodically captured and multiplexed to all the participants window systems.
The events from the window system holding the token are trandated then passed to the
application, and al other window systems inputs are blocked. Figure 2-2 shows the

10

scenario of the image-sharing model.

4
1 Event
Event Reproducer
4
Share Manager - Share Manager |
Outpui] - A
Image Event Event ! Image
= Intercepter Intercepter Reproducer
Locd
| Event
[Window System] [Window System]
Application Application
Provider Sharer

Figure 2-2. The image-sharing model

Thismodé is also able to share any single-user applications, and has been adopt-
ed in Microsoft NetMeeting. Its main drawback is the consumption of tremendous
network bandwidth, which makes the model unable to support many users at the same
time. To reduce the requirement of network bandwidth, we can output an image only
when it is modified, and group multiple graphical updatesin a single image update.

The event-sharing model, as shown in Figure 2-3, presumes that the same appli-
cation is started locally by all session participants. Then the input events from the cur-
rent token holder are intercepted then sent to all participants. Every participant proc-
esses the remote input events as they are from local user and updates its local execution
status.

11

Outpiit

v

Application

V Unified Input

a,

Application

Unified Input_‘,..-v

.
at®

Event Reproducer

Event Reproducer

4 4
Share Manager ShareManager
Qutput

4

Event Intercepter

»*"Local Input

Rl

[Window System]

Userl

4

Event Intercepter

Local Input™-,

*

v

[Wi ndO\;\'/ System]

User 2

Figure 2-3. The event-sharing model

This model requires least network bandwidth, but has the following limitations

and implementation difficulties:

The shared application must be deterministic, in other words, the shared -
plication must reach the same status on the same initial conditions and input
events. Any time dependant functions can't generate the same results in this
model.

Every participant must have the same execution environment, for each shared
application may access local environment variables or directories.

Every participant must have itslocal copy of the same execution program.
The shared applications are not allowed to update global data, for the update
semantic may be ruined by many updates instead of one.

The implementation must prevent the input events from being lost, since the
processes running on some participants may not be ready to accept the input

events from the current token holder due to slower execution speed.

The above constraints make the event-sharing system useful only for a limited

scope of applications. It is often integrated with a distributed-object model to extend

the functionality of an event-sharing system.

The multimedia digital classroom should provide presentation tools, audio con-

ference, whiteboard, and examination tool etc. to support distance learning. These tools

12

have different interaction patterns in nature:
® Presentation can be thought as a single-input-multiple-view process. Only a
user at the same time can generate inputs for this kind of applications and
other users see the execution results.
® Discussion through whiteboard and chat room can be thought as a multi-
ple-inputs process. Many users can generate inputs at the same time to express
their ideaand see results of al users.

® Examination can be thought as a local process. Each user manipulates and

sees its own application context.

To support these interaction patterns, we proposed a hybrid model of event shar-
ing and distributed objects. Section 2.2 discusses the implementation of event sharing
model on Java. Section 2.3 proposes a simple set of APIs for fast building distributed
object applications. The mechanism combining components of different interaction pat-
ternsis addressed at the end of Section 2.3.

2.2 Event-Sharing System

In CSCW, a session is a collection of users sharing an application. The user who
starts up the shared application of a session is termed the session owner. All other us-
ersin the same session are called the session participants.

There are three issues to be addressed to implement the event-sharing model:

® How to setup and discover a session?

® How to manage the input token?

® How to intercept input events?

Java is a simple, object-oriented, distributed, interpreted, robust, secure, archi-
tecture neutral, portable, multithreaded, and dynamic language. With the combination of
an application sharing system and the Java language, it is possible to build a single-user
Java application, then execute the application cooperatively in a heterogeneous envi-
ronment without any modification.

The Abstract Window Toolkit (AWT) consists of APIs responsible for building
the graphical user interface (GUI) for Java programs. JDK 1.1 uses a peer model to
provide a truly native look-and-feel by delegating the look-and-feel of the components
to a set of underlying “peer” classes. Each platform has a different set of peer classes

to wrap the native system’ s widgets. Java programs use these peer classes to output

13

graphical commands to the underlying window system.

In our implementation of the event-sharing model, a centralized scheme is adopted
for session setup, discovery, and management, as shown in Figure 2-4. A register
server running on a host provides al session participants the information of currently
opened classes. On opening a class, the session owner registers the class to the register
server, such that other users can find where to join the session and what applications
should be started. Once session participant sets up connection with session owner, it
starts Java applications by using reflection APIs. The detailed protocol for session
setup isillustrated in Figure 2-5.

Regist When

Session Start Up Register
Owner > Server
Connection
Session Session Session
Participant Participant Participant

Figure 2-4. The architecture of event propagation

Session Owner

Start Application .
Register Server

Register Session » Receive Session
Information Information
Session Participant _
Wait Connection Query Session ~<+———— SentSession
Information Information

Start Application

Build Connection 4«—Connect Session Owner

Figure 2-5. Session setup protocol

The session owner is responsible for the event propagation and the token man-
agement. At any instance, only one of the session participants holding the session token
is alowed to generate input events. Once a session is initiated, the session owner holds
the token in the first place. On receiving a token requesting command, the session

owner immediately revokes the token from the current holder and grants it to the re-

14

guester. This protocol is designed to maintain the synchronization between the token
and delayed events, since there can have events generated while token is revoked. If the
current token holder leave the session normally or abnormally, the session owner gains
the session token again. The session owner also has the privilege of taking back the in-

put token at any time. The token management protocol is shown in Figure 2-6.

Got Drop
Token(4) Token(3)
Token)/ Session Token
Requester Owner < Holder
Request Revoke
Token(1) Token(2)

Figure 2-6. Token management protocol

In our implementation, two of the AWT classes - Component and MenuCompo-
nent, are rewritten for the event interception. The original classes of JDK can be re-
placed by putting our classes in the CLASSPATH environment variable instead of
modifying the JDK package. This method avoids the break of JDK license agreement.

As being the roots of the class hierarchy of all visihle AWT components, both of
these two classes define the method dispatchEventimpl to dispatch events. We rewrite
the dispatchEventimpl methods to intercept input events. On receiving an event, the
rewritten dispatchEventl mpl takes the following steps to process the events:

1. Checksif the event needs pre-processing. We have to take special actions for

the following events to get correct behavior:

® PAINT, UPDATE: ensures the content of the component is properly
painted. These events are generated when user moves, resizes or exposes
the component.
FOCUS _GAINED: ensures the component becomes the focus owner.
KEY_PRESSED, KEY_RELEASED: ensures hotkeys be properly proc-
essed.
MOUSE_PRESSED: ensures the component gets focus.
MOUSE DRAGGED, MOUSE RELEASED: checks if session control
panel should be pooped out.

2. Check if the event should be processed locally. This includes COMPO-

NENT_MOVED, COMPONENT_RESIZED, COMPONENT_SHOWN,
COMPONENT_HIDDEN, FOCUS GAINED, and FOCUS LOST.

15

3. If the user holds the input token and the event is either consumed or a
mouse-move event, the event is broadcast to al participants of he session.
Otherwise, the event is discarded. The mouse events are aways broadcast
from token holder to all session participants for rendering a pseudo mouse
cursor.

The propagated events are written to and reconstructed from network through Java
Object Serialization API. For the transient event target, which can not be serialized by
Object Serialization API, we encode it as the path from the root window to the target.
Suppose we have a GUI hierarchy shown in Figure 2-7, the component “ Button2” will
be encoded as “WindowID, 0 0 1.” The window ID is defined as a serial number of
created windows since the application started. Because the constructor of class Com+
ponent has aso been modified, we can log any created windows for encoding event

target.

Top Window Name

T

Panel1 Panel2
Buttonl Button2 Button3

Figure 2-7. A GUI hierarchy example

Once a session participant receives a serialized event, it reconstructs the event
and simulates the normal dispatchEvent method. The only difference is that either the
target component does not exist or there is no component to consume the event. This
happens when the program is not ready to accept the event. The participant thus will
deep for awhile and try again until the event is consumed. The control flow of event

interception and playback is shown in Figure 2-8.

16

<5Jvent From Local User |

Local Events

No

Token Owner

DispatchTo
Listener

T
Yes
Y

Dispatch Event
To Listener

- Consumed

T
Not Consumed
k4

—No—

Mouse Move

——Yes—

é}ent From Remote User |

Reconstruct
Event Target

A

Mouse Move
Event

T
Yes
Y

Render Pseudo
Cursor

Event

Broadcast

Discard Event Event

Figure 2-8. Control flow of event interception and playback.

In our implementation of event-sharing model, only two kinds of events are
broadcast to each participant:

® Consumed event, which is necessary for program status synchronization.

® Mouse-move event, which is used to highlight token holder's moving of

mouse.

We can further reduce the bandwidth requirement by grouping adjacent
mouse-move events and still provide clear highlighting feature. Applications discussed
in Chapter 3 shows our application-sharing framework consumes only about two hun-
dred bytes per second.

Since al input events are passed to and recorded in the session owner, the archi-
tecture can easily support the late-join users. When a connection is established, before

sending any new coming events, the session owner dumps to this connection the chains

17

of input events that have been recorded since the beginning of this session. Under such
circumstance, the participant could be synchronized by fast playing back those input

events.

2.3 APIsfor Distributed Objects

In addition to the event-sharing model, we have also implemented a distrib-
uted-objects framework for Java programs. To modify a Java program for this frame-
work, we first have to implement the ShareAction interface, which defines the only
method doAction (Object command) for a ShareAction component. The doAction
method is responsible for parsing the command argument to do certain application spe-
cific actions. Then we replace the related method invocations in the event handling rou-
tine with the ShareManager.broadcastAction (Component target, String command)
method, where command is string encoding an application specific command and tar-
get is the component which implements the ShareAction interface. The broadcastAc-
tion method uses the network channels shown in Figure 2-7 to broadcast and synchro-
nize the ShareAction command. When a ShareManager receives a ShareAction com-
mand, it calls the doAction method of the target component to manipulate the input com-
mand.

This design philosophy allows minimum efforts for converting single-user appli-
cations to cooperative applications. The only work is to implement the single method
interface ShareAction, then modify the event handling routine to ask ShareManager
broadcasting commands instead of calling application specific methods. Modules need
to be added or modified are shown in Figure 2-9. Our experience about modifying a
single-user whiteboard to a cooperative whiteboard shows that less than one hundred

lines of code need to be modified.

18

e ———
2202020 0 2.
yr - W
- dMI-alnSIn
| Y TS T
N L= A NLLY E——
. 020200000 4
T
——————

Figure 2-9. Modify single use application to distributed model. Only the event listener
ismodified and acommand listener is added.

We also provide another interface called as “PrivateCom” for forcing applica-
tions sticking in single-user mode. If any object implements the PrivateCom interface,
its input events will not be captured by the event-sharing system. It is useful for the
work that is operated by the local participant only, for example, the examination sys-
tem.

Our model alows users to implement their applications in a hybrid style. Users
can implement the ShareAction or PrivateCom interface optionally for those compo-
nents that can accept multiple input at one time or want to adhere to single-user mode.

When the dispatchtEvent method of a component receives an input event, it first
checks if the target component is contained in any component of the type ShareAction. If
the component is contained in a ShareAction component, no matter the user holds the
token or not, the input event will be processed by the application. If the component is
contained in a PrivateCom component, then the event is processed in single-user mode.
Otherwise, only the user holds the token can process the input event. Such an event
passing mechanism allows a single-user application to include multiple ShareAction
and PrivateCom components. An example of hybrid components is shown in Figure
2-10.

C
PrivateCom

ShareAction B

ShareEvent D

Figure 2-10. Container hierarchy of different components

20

Chapter 3 Toolsfor Multimedia Digital Classroom

3.1 Introduction

In the digital classroom, a variety of functionality should be provided to support
all types of learning processes, such as lectures and discussions [Kou96]. Due to the
unique characteristics of platform transparency and application protocol integration,
WWW technologies have been adopted for information sharing on the cyberspace.
Hence, we design and implement a WWW multimedia digital classroom and its appli-
cations using Java. The multimedia digital classroom includes many teaching tools,
such as Multimedia Internet Browser, Shared White Board, and Multi-Channel Audio
Conference. As the teaching materials can be any interactive applets for better presen-
tation, the digital classroom uses the application sharing system in Chapter 2 to extend
the capability of showing from static web pages to dynamic web pages.

3.2 Design of Toolsfor Multimedia Digital Classroom

The System architecture of our Multimedia Digital Classroom (MDC) is based on
the application-sharing systemdiscussed in Chapter 2. There is one teacher and a num-
ber of studentsin a classroom. The teacher first creates a classroom on a host and logs
the class information to aregister server. Whenever a student wantsto find a classroom,
he/she has to consult the register server. He/she then creates a connection with the
teacher.

We build a package composed of many teaching application tools on Java, which
are described as follows:

Multimedia I nternet Browser

The WWW is very popular recently. Multimedia Internet Browser provides a
bridge between digital classroom and WWW. A teacher uses this web browser to open
a hypertext document that contains the contents of the current course. The teacher can
lead the students to study on the WWW by sharing the same view of the navigated web
pages. This approach lets teachers use global WWW resources to organize their teach-
ing materials.

Figure 3-1 shows a detailed diagram of the architecture of the Multimedia Internet

21

Browser. In addition to the parsing capability of the HTML format, it also provides the
ability to browse VRML documents and display some kinds of multimedia data, such as
the MPEG-1 audio and video. As different applets are used to render different media,
the Multimedia Internet Browser can be configured to dynamically load applets at run-

time. This makes the Multimedia Internet Browser very flexible and extensible.

Sharing System

N dynamicaly
dynamically loading loading

Kernd Module
Control Unit,
Class Loader Unit

Q\dynamical ly
loading

History Networking GUI
Database Interface

Figure 3-1. Architecture of Multimedia Internet Browser

Multi-Channel Audio Conference
Voiceisadirect communication method traditionally. If teachers and students use
voice to communicate with each other in the digital classroom, the learning process
will be more efficient because students can ask questions directly about difficult or un-
clear teaching materials.
There are normally three ways to transmit audio data in an audio conference envi-
ronment:
® Every participant broadcast compressed audio data to al the other partici-
pants. Every participant receives audio packets then decompresses and mixes
them.
® Every participant send compressed audio data to the session owner. The ses-
sion owner decompresses and mixes all audio data, then compresses and
sendsto all participants.
® FEvery participant send compressed audio data to the session owner. The ses-

sion owner decompresses all audio data, but mixes individually for each par-

22

ticipant to make echo cancellation. Then the session owner sends back mixed
audio to every participant.
Table 3-1 shows the overhead comparison for an audio conference with n users

talking at the same time.

Met hod P&et sManage |[Paiptainda [Dd ay |Ec hjlo

Peer to medrh |(1nl 1) |l) 1 One wdy
Central i 2ed he|/@mb 1) |1, 1, (rR)ound Ytersi
Centrali 2ed pnpdemo |1, 1, CrR)ound Ntor i

Table 3-1. Comparison of audio transmission methods (compression times,
decompression times, mixing times)

We choose the peer to peer model for the transmitting audio data in our audio
conference for echo cancellation and lower network delay. Asin the digital classroom
environment there are few people talking at the same time, the O(r?) network bandwidth
requirement won't be a critical factor. When the audio conference starts, voice uttered
by all participants is recorded, compressed, and then sent to each participant. Each
participant receives all audio source packets. The system then decompresses, mixes,
and plays back. Scenario of the transmission of the audio data is show in Figure 3-2.
Every participant uses UDP to transfer audio data. This may cause packet loss but has

fastest response time and less jitter.

Conference
/ Manager \
Conference Conference
Participant 1 Participant 3
Conference
Participant 2

Figure 3-2. The transmission of audio data uses the peer to peer mode!.

On the other hand, we choose the client-server model shown in Figure 3-3 for the
transmission of control data for synchronization and centralized management. This

model uses TCP to prevent packet loss and ensure consi stence.

23

Conference
/ Manager

Conference
Participant 1

Conference
Participant 3

Conference
Participant 2

Figure 3-3. The transmission of control data uses the centralized model.

Shared White Board

Because of the event-sharing system described in Chapter 2, a simple draw-
ing-panel Java application executed by the classroom manager becomes a shared
whiteboard without any change. To enable concurrent access to a shared white board
based on the command sharing model in Chapter 2, we implement a drawing panel with
some basic functions, such as drawing basic graphics, writing texts, and multiple
drawing pages. All people using the shared white board at the same time in the digital

classroom do not interfere with each other.

3.3 Implementation of Toolsfor Multimedia Digital Class-

room

The MDC system isimplemented in a heterogeneous environment where worksta-
tions and PCs connected through an FDDI and an Ethernet network. We list the devel -

opment environment as follows:

PC WORKSTATION
Operating System Windows 95 Sun Solaris 2.5.1
Java Compiler JDOK 1.1 JDK 1.1
Native C Compiler Microsoft Visual C++ GNU C Compiler
Network 10 Base-T Ethernet 10 Base-2 Ethernet

Table 3-2. Development environment of MDC

We have tested MDC system with participants from Windows 95 with Ethernet,
Windows 95 with modem and SUN Solaris with Ethernet, respectively. The snapshot of
the Multimedia Internet Browser is shown in Figure 3-4. The Multimedia Internet
Browser supports functions for the HTML 3.0 tag, VRML 2.0 tag, MPEG audio/video

24

and severa kinds of image formats. All modules of Multimedia Internet Browser de-
scribed in Section 2 are applet-based and dynamically loaded by the browser kerndl.
They are functionally independent between each other so that performance enhancement
can be achieved by using the multi-thread technique to execute different modules in
parallel. With applet-based module design, we can get the maximum extension for fu-
ture improvement. New modules, downloaded from web server as Java applets, could
be added into the browser dynamically.

User can aso add other functions to the browser without changing anything if these

functions are written by Java applet class.

File View Go Bookmarks Help

EllE

Forward

* Back

\.,»d’

Reload

‘Open l \“Stop |

Location: Ihttp:J"J"www_cmlah_031e_ntu_edu_twf~ssb

e 9 9 B t‘j-’ﬂ'f}{"f (.ﬁ:ﬁaf(’f[-‘)?Wﬂﬂ(’z
C-.)/ MDC CHultéCHedia Shigital Classronm

ChT . CETE | Wational Tarwan Universd

Access Count:

@ ntroduction

As the rapid development of Internet, it is important to connect computers

and provide information communication between different areas.Distance
learning will play an important role of education popularization in the futur

e. It breaks the limitation of traditional courses so that teachers and students

do not need in the same classroom. These geographically dispersed teach

ers and students in the digital classroom can learn and share knowledge

with less effort and cost. A teacher only uses the powerful browser to synch
ronously open a hypertext document which contains the contents of course =]
Ready

Figure 3-4. The Multimedia Internet Browser

When a teacher starts the Audio Conference, the control panel shown in Figure 3-5
will appear. The control panel shows how many participants are on this digital class-
room, and who is speaking now. User can adjust the volume of recorder or player by

dragging the controlling scrollbars.

25

We use ITU-T G.723.1-6.3 [ITU96-1] audio compression / decompression stan-
dard to reduce audio data size. The time frame is 60ms, and audio data is about
6.3kbits/sec*60ms ~ 48bytes. We add a 16 bytes header to audio packet, and their

meanings are listed in Table 3-2. In the environment of only one user keeps talking, the

|

Control Panel |- |_I|

Juict | Save | Leave |
Volume Conirol
Request REQUEST
Play |
Record |
Threshold o |
Class Member
¢
Chris Christopher

Figure 3-5. Control panel of the Audio Conference

network bandwidth requirement will be 64bytes/60ms™ 8.53kbits/s.

Field name LenByhéMeani ng

Size 1 Audi o data size
Id 1 Partiscilpant

Magic 1 Erdert ecti on

Reserved 5 Reserved for futu
Seq 8 Ti me stamp

Table 3-3. Meaning of various fields in the header of an audio packet.

As the peer to peer transmission model of audio data needs n*(n-1) packets for a
conference with n people talking at the same time, today's modem can support three
users speak at the same time. With silence detection and access control, this method can
support tens of students from various network configurations and till leaves enough

bandwidth for multimedia presentation. Compressed audio packets are transmitted by

26

r

e

exter

the UDP protocol. Besides, we use multiple threads for implementing the audio re-
corder, player, network handler, and central controller modules in order to enhance
performance and avoid busy waiting situation.

We aso provide a chat room and a shared whiteboard shown in Figure 3-6 and
Figure 3-7 in the MDC system. These two applications are based on the distributed ob-
ject APIs mentioned in Section 2.3. They are first written as single user application,

and then modified to collaborative objects with less than 100 lines of code.

—-i fudio Conference Message Board [= |_||
message

Christopher : hello, everybody!
Chris : welcome 0 my conference

inpui message at below
7| Yes, Iam glad to join your oonferenoel

Figure 3-6. Audio Conference Message Board.

27

= Shared white Board BE
File Page Edit

Font Size : 29
S
Drawing Tools:

) Pen @ Char
) Line _ Polyline
' Rect) Oval

__Emsable _} Clear

Go To Page :

Implemented By Drliu

Color Paleite:
ORI whic
(RSN v ciow
_J) Green) Cyan
[P
_Omnge [[ENGgeHE|

Figure 3-7. Graphics Shared White Board.

|Page 1

3.4 Discussions

This section discusses important implementation problems and the approaches we
took to resolve these issues.
Performance Challenge

In order to achieve platform transparency, Java adopts the virtual machine tech-
nology. Each Java supporting platform executes the virtual machine first. Then the vir-
tual machine loads the class file and interpreters its byte codes [Lin96]. Due to this
kind of approach, performance of Java applications is usually slow in current environ-
ment. Although just-in-time (JT) compiler has been introduced to alleviate the per-
formance problem, we still need optimi zed native code to support real time and CPU
intensive applications. Therefore, we use C native codes to record, compress, decom-
press, and mix audio data.
Weak Device I nterface Supported by Java

Java lacks audio device interface in JDK1.1. We use native codes to develop ar
dio device interface, including the recorder and player. The method increases the com-
plexity of the overall system. Moreover, we must implement different device interfaces
in order to sustain the cross-platform property. Java Media Framework (IMF), re-

leased with the Java2 platform extension, provides a better environment for multimedia

28

applications. As IMF evolves to support more multimedia formats and provides better
performance, we can write pure Java audio conference in the near future.
Network Limitation

The idea network environment of the MDC system should have the following
properties.

® Low delay latency;

® Error free transmission;

® Multi-points communication.

However, Internet adopts the TCP/IP protocol to transmit the data packets. TCP/IP
protocols guarantee error-free transmission, but do not support bounded transmission
delay and multi-points communication. Therefore, we use UDP to send the audio data
that need real-time transmission. The MDC server constructs many point-to-point TCP
connections for each client to transmit shared events and actions. Although this ap-
proach solves the multi-point communication problem, it wastes too much network

bandwidth for transmitting duplicate packets on these point-to-point connections.

29

Chapter 4 Academic I nformation System

4.1 Introduction

Chapters 2 and 3 have addressed the design and implementation issues of multi-
media digital classroom for a distance learning environment on Internet. A complete
virtual university needs an academic information system to address the problem of a-
ministration inefficiency in contemporary universities. The booming Internet industry
has made WWW a mgor channel for publishing enterprise information. As there are
many WWW technologies available, we must consider the usage patterns of an aca-
demic information system before choosing an ideal tool for it:

® \Workload is very high in some periods. In the course selection period, most

students try to login the system in the first hour to register hot courses. This
makes performance a very critical factor to be addressed.

® Novice users need to do their jobs in afew minutes right after the first usage

of the academic information system. How to design an easy and intuitive user
interface is very important.

® Users need much information to make the decision of course selection and

check the status of graduation. How to provide personalized information effi-
ciently without paper is the key to reduce working time and administrative
cost.

Most of the early implementations of the WWW publishing systems are done using
the CGlI technique. However, due to the poor performance and the lacks of interaction,
the CGl is not an ideal tool to build an academic information system. Many technolo-
gies have been proposed to solve the performance problem of CGl, such as IDC, ASP
and ISAPI. Their mgjor contribution is using multi-thread instead of multi-process to
reduce server load. The interaction problem at client side has been alleviated by dy-
namic HTML, VB script and Java script.

With the abilities to build cross-platform business logic into the browser and go-
plication server, Java gives WWW better performance and user interaction to meet the
needs of academic information system [RAM97]. Our study results in a Java based
3-tier architecture shown in Figure 4-1. Under this architecture, once a client is

connected to the system, the authenticator first checks the user‘ s account and password

30

nected to the system, the authenticator first checks the user’ s account and password
within a database table. If the password is valid, it then creates a corresponding user
object to serve the client. Instead of building a database connection for each user object,
all SQL commands are passed through the database connection pool. The connection
pool is an array of pre-established JDBC Connection objects. It uses a round-robin
allocation strategy when a user object requires a database connection. The user object
uses the synchronized Java keyword to lock the database connection during a transac-
tion to prevent contention on the database connection. This architecture has the follow-
ing advantages over the other approaches:
® Java applet has the full power of programming language to build complex in-
teractive applications. This could provide most efficient user interface to
make the job to be donein optimal way.
Ul updates are handled by applet, and then can alleviate server load,
RMI server is statefull and thus provides greater opportunity for performance
tuning and security management.
The traffic between client and middleware is further reduced;
The database connection pool pre-allocates database connections to reduce
response time;
® The database connection pool increases the utilization of database connec-

tions, thus reduces the license fee.

User
“Request/
Call/ ObJect quease, St
Client Results Connectalsgn Pre-Allocated
Applet Create Pool Connections

Login
Authenticator
RMI Server

Figure 4-1. The architecture of RMI based 3-tier information system.

4.2 System Design and | mplementation

Currently, our system provides the following functionality:
® Query courses,
® Select and drop courses;

31

Automatically select mandatory courses for students;
Update personal contact information;

Query student information of a particular class;

Send mail to students of aclass;

Query higtoric study status,

Query scoresin a semester;

Query class time table of current semester;
Input score and syllabus of aclass;

System features, document for data analysis and design details are listed in Ap-
pendixes A and B. Compare to systems of other universities, our implementation has the
following outperformed characteristics:

® Singlelogin point. All functionality and information are integrated together by

different roles of users. This provides a single authentication to al informa-
tion.

® Smart course selection wizard. Our implementation provides the students

personalized information to guide the course selection. All academic rules,
such as mandatory courses, preliminary courses, double magor and assistant
major, are examined to filter available courses. Students see exactly what
they can choose, no more and no less. Course selection can be done in several
mouse clicks even for novice.

® Fixed interfaces for repetitive tasks. As we use Java applets, GUI of repeti-
tive tasks are designed to let users complete their job in a minimum of navi-

gation.
4.3 Performance Analysis

Performance is the most critical concern of current Java implementations. To
evaluate the response time of our system, we setup a smulation environment with two
serversfor DBM S and RMI server whose configurations are shown in Table 4-1. The-
Se two servers are connected within the same local area network, and are not isolated
from outside environment. Although this configuration may introduce some variances
and make simulation results not accurately match theoretic prediction; it reflects the
real runtime environment where many network applications competing with each other
for network bandwidth.

32

CPU Pentium 133

RAM 64MB

Hard disk EIDE 4.0GB*1
Network adapter 10Base-T Ethernet

0S Windows NT 4.0 + SP3
DBMS SQL Server 6.5 + SP3
Language JDK1.1.7

WWW server 11S3.0

Database connection software JDBC-ODBC Bridge

Table 4-1. Server side configurations.

Workload is generated by a client running multi-threads to simulate many students
connected at the sametime. Theclient isan AMD K6-266 machine connected to a local

area network with two routers away from servers. Each student executes the operations

listed in Table 4.2 once per visit to our system, assuming that each operation is issued

every 10 seconds. To evauate the response time of our system, we use random distri-

bution as our workload model. The response time is measured by the worst out of the

best 90% time and illustrated in Figure 4-2. The smulation shows that the system can

serve 200 visits per hour.

Operation Remote calls Query complexity
SelectCourse |Get credit hint 3 select statement
Get core credit hint |8 select statement
Get note 1 select statement
Get selected course |7 select statement
1 prepared statement executed 8 times
Get unselected course|7 select statement
2 prepared statement executed 150 times
QueryCourseD |Query course 1 select statement
5 prepared statements each executed 50 times
QueryCoursel |Query course 1 select statement
5 prepared statements each executed 40 times
QueryCourse?2 |Query course 1 select statement
5 prepared statements each executed 11 times
QueryCourse3 |Query course 1 select statement
5 prepared statements each executed 22 times
QueryCoursed4 |Query course 1 select statement
5 prepared statements each executed 16 times
ListCourse Query selected course|7 select statements
1 prepared statement executed 8 times
QueryScore Query score 1 select statement
StuLogin Login validation 1 select statement

Table 4-2. Operations and query complexity used in response time simulation.

33

@ T 1N OO0 00c°

O © O O O o o <«
5 O O ¢ ¢ ©c c c

q
(7]

1000
8000 ——| i stC
—=—query
6000 query
guery
4000 Squery
—e+—qgquery
—+—quer
2000 a y
——s el ec
stulLo

0 ms

100v/ h 200v/ h 300v/ h

Figure 4-2. Response time vs. workload.

4.4 Performance Optimization

Most of the database overheads come from those prepared or heavily joined
statements. These overheads normally come from complex database schema and appli-
cation requirements. To optimize our system performance, we have adopted the fol-
lowing techniques:

® Database de-normalization. For information read frequently and updated

rarely, we can use database de-normalization © prevent tables-joins or pre-
pared statements. Course type, number of student and name of teachers are
such kind of information in our system.

® Caching. There are information updated rarely in academic information sys-

tem, which can be cached in RMI server b avoid database access. These
kinds of information include preliminary requirement, mandatory course re-
quirement, graduation rule, major department, double-major department, and
assistant-magjor department. Data consistency between database and cache is
maintained by administrator, and typically executed at most once per smes-
ter.

® |ncrementa status update. Some information generated in previous operations

can be kept for later use instead of querying entirely from database. Credits
passed or selected can ke incrementally updated in RMI server instead of
querying everything every time from database.

® Rewrite SQL commands. As we have cached much information in RMI server,

some complex and slow SQL statements can be rewritten to a more concise

34

form. We use this technique to reduce the response time of course queries
when query condition contains department’ s name.
® Query path heuristic. SQL is a declaration language. Its execution speed is
highly affected by indexes and query optimizer. Although we have built
proper indexes for frequent queries, the query optimizer in Microsoft SQL
server may not be smart enough to choose the optimal access path. After
careful examination of the execution plans generated by Microsoft SQL server,
we give access hints to two select statements. This saves 250ms execution
time totally on the database server.
The query complexity of each operation after optimization is listed in Table 4-2.
All prepared statements have been eliminated from previous implementation. Every

remote operation except oneis now done at a single carefully examined SQL command.

Operation Remote oper ation Query complexity
SelectCourse |Get credit hint

Get core credit hint
Get note

Query selected course 1 select statement
Query unselected course |2 select statement

QueryCourseD |Query course 1 select statement
QueryCoursel |Query course 1 select statement
QueryCourse? |Query course 1 select statement
QueryCourse3 |Query course 1 select statement
QueryCoursed |Query course 1 select statement
ListCourse Query table 1 select statement
QueryScore Query score 1 select statement
StuLogin Login validation 1 select statement

Table 4-3. Query complexity of each smulated operation after optimization.

The response times and DB/RMI CPU load ratios listed in Table 4-3 are gener-
ated by 100 repetitively runs of the same operation. It shows RMI server consumed
about 100% to 200% of CPU time than database server. With new JIT (Just-In-Time)
compiler technology reported in IBM JDK1.1.7 and Sun Hot Spot engine, our imple-
mentation becomes database bound. As we have off loaded many overheads from data-
base to RMI server and the bottleneck is still on database server, we can claim that our

implementation is optimal.

35

Remote operation

Responsetime

DB/RMI load ratio

Get credit hint

4ms

0

Get core credit hint 6ms 0

Get note 10ms 0

Query selected course 100ms 0.6
Query unselected course 570ms 0.6
Query courseD 350ms 0.5
Query coursel 190ms 0.4
Query course? 0mMs 0.8
Query course3 120ms 0.5
Query coursed 100ms 0.6
List course 50ms 1.0
Query score 40ms 0.9
Login validation 50ms 0.2

Table 4-4. Response time and DB/RMI CPU load ratio of simulated operations after

optimization.

Simulation showed in Figure 43 to Figure 411 predicts that the system could

serve 1500 visits per hour with response time being less than 10 seconds.

10006 ms /
8000_...5 /
6000_...3 //
4000_...3 /\/
zooo..://\/
Om‘._ ' ! ! ! ! ! L ! ! L I ! ! ! !
100v/ h 600v/ h 1100v/ h 1600

Figure 4-3. Response time vs. workload for selectCourse operation.

36

v/

h

6000

5000

4000

3000

2000

1000

Om

100v/ h 600v/ h 1100v/ h

1600

Figure 4-4. Response time vs. workload for queryCoursel operation.

6000

5000

4000

3000

2000

1000

Om
100v/ h

600v/ h

1100v/ h

1600

Figure 4-5. Response time vs. workload for queryCourseD operation.

37

v/

v/

h

h

4000

3000

2000

1000

Om

100v/ h 600v/ h 1100v/ h

1600

Figure 4-6. Response time vs. workload for queryCourse3 operation.

3000

2000

1000

Om
100v/ h

600v/ h

1100v/ h

1600

Figure 4-7. Response time vs. workload for queryCourse4 operation.

38

v/

v/

h

h

300 Opm

2000

1000

Om
100v/ h

600v/ h

1100v/ h

1600

v/

Figure 4-8. Response time vs. workload for queryCourse2 operation.

1500

1000

500

Om
100v/ h

600v/ h

1100v/ h

1600

v/

Figure 4-9. Response time vs. workload for listCourse operation.

39

h

h

1500

1000

500

Om

100v/ h 600v/ h 1100v/ h 1600

Figure 4-10. Response time vs. workload for queryScore operation.

1500

1000

500

Om

100v/ h 600v/ h 1100v/ h 1600

Figure 4-11. Response time vs. workload for stuL ogin operation.

In course selection period, our experience shows that about 40% users will visit
our system within the first hour. This makes our system running within the same envi-

ronment asthat in simulation feasible for a university with 4000 students.

4.5 Workaround Bugsin JDK 1.1

There are some serious bugs in JDK1.1 that needs to be solved to make the aca-

40

v/

v/

h

h

demic informeation system works. Two tricky bugs and their solutions are discussed as
follows:

JDBC driver internationalization problem

As most database servers can not store Unicode strings, JDBC drivers need to do
encoding trandation on the fly. The JDBC-ODBC bridge driver in JDK1.1 doesn't im+
plement the correct internationalization specification. Instead, it truncates the high byte
of Unicode when writes to database, and pads high byte with zero for each byte when
reads from database. To work around this bug, we write a class SQL listed kelow.
Then wrap code with SQL.toSQL() and SQL.fromSQL() before sending to and after
reading from database.

import sun.io.*;
/* *
* The classis used to work around abug in JDBC drivers. The driver truncate the leading
* byte of Unicode character before sending to DBMS. Thisonly worksfor ASCII character.
* To handle strings to DBMSS, you have to use <code>SQL .toSQL ()</code> to wrap the output
* string. JDBC drivers also treat the datafrom DBMS as ASCI| code by adding O before every
* pytes of the incoming data. This also produces errors for Non-ASCII characters. To work
* around this bug, you have to wrap the incoming data with <code>SQL .fromSQL ()</code>
*/
public class SQL {
static ByteToCharConverter toChar;
static CharToByteConverter toByte;
static {
try {
SQL .toChar = ByteToCharConverter.getConverter("Big5");
SQL .toByte = CharToByteConverter.getConverter("Big5");
} catch(Exception ex) {
ex.printStack Trace();

System.exit(1);
}
}
/**
* convert a string to ASCII byte array
*/

public static byte[] toAscii(String s) {
if (s==null) return new byte[Q];
try {
synchronized(toByte) {
return toByte.convertAll(s.toCharArray());

}
} catch(Exception ex) {
return new byte[0];
}
}
/**
* Convert a string for output to DBMS
* @param s The string needs to be converted.
* @return A string which will be truncated by JDBC to produce Bigh characters.
*/

41

public static String toSQL (String s) {
if (s==null) return "*;
bytef] orig;
try {
synchronized(toByte) {
orig = toByte.convertAll(s.toCharArray());
}

char[] dest = new char[orig.length];
for (int i=0; i < orig.length; i++)
dest[i] = (char)orig[i];
return new String(dest);
} catch (Exception e) {
e.printStackTrace();
return s,

}

/**

* Convert an incorrect string produeced by JDBC drivers to correct Unicode string.

* @param s The string needs to be converted.

* @return A correct Unicode string.

*/

public static String fromSQL (String s) {
inti, j;
if (s==null) return "*;

char[] orig = stoCharArray();
j = orig.length;
bytef] dest = new bytefj];
for (i=0; i < j; i++)
dest[i] = (byte) orig[i];
try {
synchronized(toChar) {
return new String(toChar.convertAll(dest));
}

} catch (Exception e) {

e.printStack Trace();
return s,

}

RMI1 server can’'t be accessed cross sub-net on Windows NT

RMI server uses domain name instead of IP to publish its services. As the fully

qualified domain name is not always available on every platform, this approach may

cause cross sub-net problem. The implementation of java.net.InetAddress on Windows

NT can't return fully qualified domain name. To solve this problem, we modify the line

in java.net.InetAddress:

to

| ocal Host . host Nane i mpl . get Local Host Nane() ;

| ocal Host . host Nane = "admmwv. cc. ncnu. edu. tw';

to give the RMI server a fixed domain name and place the modified

42

java.net.InetAddress in proper directory to replace that in JDK library.

43

Chapter 5 Conclusions and Future Work

5.1 Conclusions

The event-sharing framework on Java allows the possibility of building sin-
gle-input collaboration tools from existing applications without any change. The dis-
tributed object APl makes the building of multiple simultaneous input applications easy
and fast. The hybrid model we propose can share most Java applications transparently,
and can let programmers build sophisticated collaboration tools. Single-input, multi-
ple-input and local AWT objects can be integrated together in a Java Virtua Machine.
This framework can be used as a solid runtime environment for various tools for mul-
timediadigital classroom.

Tools for multimedia digital classroom, such as browser, shared whiteboard and
audio conference, are built on the application-sharing framework to support distance
learning on Internet. The extendible architecture of our digital classroom makes new
methods of material presentation possible whenever they are ready on Java.

Our implementation of the multimedia digital classroom can support most users
doing distance learning on Internet. Multimedia presentation, audio conference, shared
white-board, chat room and Java application sharing are all simultaneoudy available
through modem connections on different platforms. The multimedia digital classroom is
technically feasible for large applications of distance learning on Internet.

The academic information system exhibits features such as easy to use, high per-
formance, robust, low bandwidth, and low cost. Our real world experience at National
ChiNan University shows that even novice users on Internet can inquire academic in-
formation easily without any help. Our optimization efforts have made the academic
information system feasible for a university of 15000 students on nowaday hardware.
The cost estimation in Table 5-1 shows that hardware and software costing only
150000 NT$ is needed to support alarge university.

Har dwar e/Softwar e Cost Price(NT$)
Dual Pentium Il 350+256MB RAM 100000
Windows NT 4.0 24000
SQL Server 6.5 30000
Total 154000

Table 5-1 Cost to support a university of 15000 students.

44

The estimated benefits after using our academic informetion system, for a univer-
sity of 15000 students, are summarized in Table 5-2.

Benefit Amount| Unit price(NT$)| Return(NT$/year)
Paperless 300000 papers 0.5/paper 150000
No key in 150000 entries| 0.5/entry 75000
Save student’ stime 15000 hours 75/hour 1125000
Save staff’ stime 1200 hours| 250/hour 300000

Tota 1650000

Table 5-2 Returns of academic information system.

A virtua university based on our implementation of multimedia digital classroom
and academic information system can aleviate or even solve the problem of escalating

costs and uneven demographics.

5.2 FutureWorks

Our design and implementation of a virtual university are based on WWW and
Java technologies. As these technologies are changing rapidly, new software and nate-
ria presentation methods are introduced constantly. To satisfy new requirements and
promote our system to more people, maintenance is aways needed. Some of the future
works are listed as following:

® Apply multimedia digital classroom to real distance learning courses. A-

though we have tested the multimedia digital classroom in various configura-
tions and shown that it is feasible on Internet, experience from usersis dways
valuable to improve the overal quality of the system. Audio jitter, functional -
ity of shared whiteboard and supporting of HTML tags is to be evaluated in
real distance learning courses.

® Port the application-sharing framework to JDK1.2 that has a new pure Java

user interface framework called Swing. This effort can bring new applica-
tions written in Swing to multimedia digital classroom.

® Extend the functionality of academic information system, such as homework

hand-in and course evaluation. Promotion of the RMI based 3-tier architecture
will also be applied to other university information system, such as budget

control and property management system.

45

Bibliography

[ABDO1]

[ABD94]

[ABDY7]

[ARCOS]

[BAR97]

[BEGY7]

[BEROS]

[BRO97]

[BUR91]

H. Abdel-Wahab, and M. Feit, “XTV: A Framework for Sharing X Win-
dows Clients in Remote Synchronous Collaboration”, Proceedings |[EEE
Conference on Communications Software: Communications for Distrib-
uted Applications & Systems, Chapel Hill, NC, April 1991, pp. 159-167.
H. Abdel-Wahab and K. Jeffay, “Issues, Problems and Solutions in Sharing
X Clients on Multiple Displays’, Journal of Internetworking Research &
Experience, Vol. 5, No. 1, pp.1-15, March 1994.

H. Abdel-Wahab, B. Kvande, O. Kim, J.P. Favreau, “An Internet collabora-
tive environment for sharing Java applications,” Proceedings of the Sixth
|EEE Computer Society Workshop on Future Trends of Distributed Com-
puting Systems, Oct. 1997, pp. 112-117.

F. Arcedlli, M. De Santo, A. Chianese, “Client-server architecture for dis-
tributed learning environments. a proposal,” Proceedings of the
Thirty-First Hawaii International Conference on System Sciences, Val. 7,
Jan. 1998, pp. 395-403.

D.B. Barsky, A.V. Shafarenko, “WWW and Java-based distributed exami-
nation system for distance learning applications,” Proceedings of Second
Aizu International Symposium on Parallel Algorithms/Architecture Syn-
thesis, March 1997, pp. 356-363.

J. Begole, C. A. Struble, and C. A. Shaffer, “ Leveraging Java Applets. To-
ward Collaboration Transparency in Java,” |EEE Internet Computing, Vol.
1, No. 2, March-April 1997, pp.57-64.

K. Bergner, A. Rausch, M. Sihling, “Casting an abstract design into the
framework of Java RMI,” Proceedings of 1998 International Conference
Software Engineering: Education & Practice, Jan. 1998, pp. 278-285.
M.H. Brown, M.A. Ngork, R. Raisamo, “A Java-based implementation of
collaborative active textbooks,” IEEE Symposum on Visuad Languages,
Sep. 1997, pp. 372-379.

A. Burger, B. Meyer, C. Jung, and K. Long, “ The Virtual Notebook System”,
Hypertext * 91 Conference Proceedings, November 1991.

46

[CHA96]

[CHAQT]

[CHE97]

[CRAOZ]

K.M. Chandy, A. Rifkin, J. Mandelson, M. Richardson, W. Tanaka, L.
Weisman, “A world-wide distributed system using Java and the Internet,”
Proceedings of 5" IEEE International Symposium on High Performance
Distributed Computing, Aug. 1996, pp. 11-18.

I-C. Chang, L-L. Chen, JJ. Shen, K-C Hsu, J-H. Huang, “Design and Im-
plementation of a Multimedia WWW-Based Note-Taking System for Dis-
tance Learning,” Proceedings of International Conference on Consumer
Electronics, June 1997, pp.10-11.

B-Y. Chen, T-J. Yang, and M. Ouhyoung, “ JavaGL—A 3D Graphics Li-
brary in Java For Internet Browsers’, IEEE Trans. on Consumer Electron-
ics, Vol. 43, No. 3, Aug. 1997, pp.271-278.

E. CraigHill, R. Lang, and J.J. Garcia-Luna, “Environments to Enable In-
formal Collaborative Design Process,” 4™ Annual National Symposium on
Concurrent Engineering, CALS & CE, Washington ‘ 92, pp. 47-62.

[CRA97] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, M. Wolczko,

[CUT96]

[DIVOSg]

[FRAS7]

[FOX96]

[GOE9S]

“Compiling Javajust intime,” IEEE Micro, Vol. 17, No. 3, May-June 1997,
pp. 36-43.

M.R. Cutkosky, J. Glicksman, and J.M. Tenenbaum, “ MadeFast: Collabora-
tive Engineering Over the Internet” Communications of the ACM, Vol. 39,
No. 9, 1996, pp. 78-87.

S. Divjak, “Design of hypertext based courseware with the integrated Java
and VRML modules,” 9" Mediterranean Electrotechnical Conference, Vol.
1, May 1998, pp. 178-181.

K. Franze, O. Neumann, A. Schill, S. Stocker, “An infrastructure for col-
laborative teleteaching,” Proceedings of Sxth IEEE workshops on Ea-
bling Technologies: Infrastructure for Collaborative Enterprises, June
1997, pp. 341-346.

G. Fox, W. Furmanski, “Towards Web/Java-based high performance dis-
tributed computing-an evolving virtual machine,” Proceedings of 5" IEEE
International Symposium on High Performance Distributed Computing,
Aug. 1996, pp. 308-317.

K.M. Goeschka, J. Falb, W. Radinger, “Database access with HTML and

Java-a comparison based on practical experiences,” Proceedings of The

a7

[GOS97]

[GUA9S]

[GUPOS]

[HAUSS]

[1ITU96-1]

[1ITU96-2]

[JDK 98]

[KOS98]

[KOU98]

[KOU97]

[KUM94]

[LAI9T]

Twenty-Second Annual International Computer Software and Applications
Conference, Aug. 1998, pp. 588-593.

J. Godling, “The feel of Java,” IEEE Computer, Vol. 30, No. 6, June 1997,
pp. 53-57.

H. Guan, Y. Zhang, “ Java-based approaches for accessing databases on the
Internet and a JDBC-ODBC implementation,” Computing & Control Engi-
neering Journal, Vol. 9, No. 2, April 1998, pp. 71-78.

A. Gupta, C. Ferris, Y. Wilson, K. Venkatasubramanian, “Implementing
Java computing: Sun on architecture and applications deployment,” |EEE
Internet Computing, Vol. 2, No. 2, March-April 1998, pp. 60-64.

M. Hauswirth, M. Jazayeri, A. Winzer, “A Java-based environment for
teaching programming language concepts” FIE 28" Annual Frontiers in
Education Conference, Nov. 1998, pp. 296-300.

ITU-T Recommendation T.120: “Data Protocols for Multimedia Confer-
encing,” http://info.itu.ch/itudoc/itut/rec/t/t120 35511.html, July, 1996.

ITU-T Recommendation G.723, “Dua rate speech coder for multimedia
communications transmitting a 53 and 6.3 kbits/s,”
http://info.itu.ch/itudoc/itu-t/rec/g/g700-799/9723-1_32261.html , 1996.
JDK1.1.7B documentation, URL :http://www.javasoft.com/products/jdk/
1.1/docs.html, 1998.

P. Kostur, “Building and managing an intranet,” Proceedings of 1998 IEEE
International Professional Communication Conference, Vol. 2, Sep. 1998,
pp. 51-57.

R. T. Kouzse, J. D. Myers, W. A. WuUIf, “ Collaboratories: Doing Science on
the Internet,” |EEE Computer Mag., pp.40-46, Aug. 1996.

A. Koutsoumbos, R. Arora, “Enterprise Java,” Proceedings of Technology
of Object-Oriented Languages and Systems, Nov. 1997, pp. 369-370.

V. Kumar, J. Glicksman, and G.A. Kramer, “A SHAREd Web to Support
Design Teams,” Proc. Third Workshop on Enabling Technologies: Infra-
structure for Collaborative Enterprises, Morgantown, West Virginia,
April 1994, pp. 178-182.

F-P. Lai etc. “ The integration of enterprise information—Intranet,” Commu-
nications of IICM, vol. 1, No. 2, April 1997, pp. 43-54.

48

[LEE97]

[LEW96]

[LINGG]

[LIT9g]

[LOO9S]

[MANO4]

[MEL96]

[MIN94]

K-C. Lee, K-N. Chang, SS. Yu, I-C. Chang, GW. Shia, W-C. Chen, and
J-H. Huang, “Design and Implementation of Important Applications in a
Java-Based Multimedia Digital Classroom,” |EEE Transactions on Con-
sumer Electronics, Vol. 43, No.3, August 1997, pp. 264-270.

T. Lewis, “The big software chill,” IEEE Computer, Vol. 29, No. 3, March
1996, pp. 12-14.

T. Lindholmand F. Yédlin, “ The Java Virtua Machine Specification,” Ad-
dision-Wedey, MA USA, 1996.

M.C. Little, SM. Wheater, “Building configurable applications in Java,”
Proceedings of Fourth International Conference on Configurable Distributed
Systems, May 1998, pp. 172-179.

C. Loodey and F. Douglas, “High-Performance Client/Server, A Guide to
Building and Managing Robust Distibuted Systems,” Wiley, 1998.

R. Manohar and A. Prakash, “Replay by Re-execution: A Paradigm for
Asynchronous Collaboration via Record and Replay of Interactive Multi-
media Sessions,” ACM S GOIS Bulletin, Vol. 15, No. 2, pp.32-34, Dec.
1994.

H. Meeis, “Toward the Information Network,” IEEE Computer Mag.,
pp.59-67, Oct. 1996.

W. Minenko, J. Schweitzer, “ An Advanced Application Sharing System for
Synchronous Collaboration in Heterogeneous Environments,” S GOIS Bul-
letin, Vol. 15, No. 2, Dec. 1994, pp. 40-44.

[MIN95] W. Minenko, “ The Application Sharing Technology,” The X Advisor, Vol. 1,

[MINOS]

[MIU98]

[NCN97]
[RAMO7]

No. 1, June 1995.

D. Min, E. Choi, Y.-T. Han, D. Hwang, J.-H. Jung, “A distributed multime-
dia conferencing system for distance learning,” 1EEE International Work-
shop on Multimedia Software Engineering, April 1998, pp. 88-95.

M. Miura, J. Tanaka, “A framework for event-driven demonstration based
on Java toolkit,” Proceedings of 3¢ Asia Pacific Computer Human Inter-
action, July 1998, pp. 331-336.

See http://admwww.cc.ncnu.edu.tw/index.html .

P. Ram, R. Abarbanel, “Enterprise Computing: The Java Factor,” |IEEE
Computer, June 1997, pp. 115-117.

49

[ROS98]

[SEL98]

[SHI96]

[SHIO8]

[SMEQ7]

[TOY94]

[VANO7]

[WOL97]

[XAV98]

[YU97]

[YU98]

D. Rosenberg, “Bringing Java to the enterprise: Oracle on its Java server
srategy,” |EEE Internet Computing, vol. 2, no. 2, March-April 1998,
pp52-59.

J. Sdlentin, B. Mitschang, “Data-intensive intrae and Internet applica-
tions-experiences using Java and CORBA in the World Wide Web,” 14™
Inter national Conference on Data Engineering, Feb. 1998, pp. 302-311.
C-W. Shiah, JC. Cheng, and W-C. Chen, “A Practical Point-to-point Fil-
ter-based Shared Window System,” In Conference of Eastern-Western
Human Computer Interface 96, Mosco, 1996.

S. Shirmohammadi, J.C. De Oliveira, N.D. Georganas, “Applet-based tele-
collaboration: a network-centric approach”, IEEE Multimedia, vol. 5, no. 2,
April-June 1998, pp. 64-73.

C. Smeaton, I. Nellson, “ Adapting the infrastructure provided by the World
Wide Web for educational purposes,” Proceedings of the 23" EUROMI-
CRO conference, Sep. 1997, pp. 72-77.

G. Toye, M.R. Cutkosky, L.J. Lefer, JM. Tenenbaum, and J. Glicksman,
“SHARE: A Methodology and Environment for Collaborative Product De-
velopment,” The International Journal of Intelligent and Cooperative In-
formation Systems, val. 3, no. 2, June 1994, pp. 129-53.

A. Van Hoff, “The case for Java as a programming language,” |EEE Inter-
net Computing, Vol. 1, No. 1, Jan.-Feb. 1997, pp. 51-56.

A. Wollrath, J. Waldo, R. Riggs, “Java-Centric Distributed Computing,”
|EEE Micro, May/June 1997, pp. 44-53.

A. Xavier, A. Spanias, “An Adaptive System Identification Java Simul ation
for Internet based Courseware,” FIE 28" Annual Frontiers in Education
Conference, Nov. 1998, pp. 348-353.

S-S Yu, C-W. Shia, and W-C. Chen, “ Application Sharing Frameworks on
Java,” Proceedings of IEEE International Conference on Consumer Elec-
tronics, June 1997, pp. 14-15.

S-S. Yu, and W-C. Chen, “A Java Based Multi-Tier Architecture for Enter-
prise Computing: A Case Study from a University Academic Informetion
System,” Proceedings of IEEE International Conference on Consumer
Electronics, June 1998, pp. 252-253.

50

[ZHA98] Z. Zhang, A. Karmouch, “Multimedia courseware delivery over the Inter-
net,” IEEE Canadian Conference on Electrical and Computer Engineering,
Vol. 2, May 1998, pp. 609-612.

51

Appendix A Functionality of Academic Information
System

A.l Server Side I nterface Definitions

We defined four interfaces for objects on the RMI server:
® NCNUCoursefor course queries,

® NCNU for authentication and global information;

® NCNUStudent for student related services;

® NCNUTeacher for teacher related services,

Their detailed definitions are listed below:

public interface NCNUCourse extends java.rm .Renote {
/**
* Get current academ c year.
* @eturn Current acadeni c year such as "871"
*/
String get AcaYear () throws RenpteException;
/**
* Get courses satisfy query conditions.
* @aramyear Academ c year such as "871"
* @aramdeptid Departnment short name, such as
* @aramcoreType Core course type, "0" for non core course, "1" to
"4" for legal core course type
* @ar amname Cour se name. Any course name contains the string wll
be sel ect ed
* @aramt eacher Teacher name. Any Teacher's name contains the string
will be selected
* @aramgrade G ade of the course designed for
* @aramtinme Courses hold inthe tinme period. "b5abcd" means Fri day
nor ni ng
* @arampl ace d assroomwhere courses may take pl ace.
* @eturn array of (, , , , , , , , ,

S)

*/
String[][] queryCourse(String year, String deptid, String coreType,
Stringname, Stringteacher, Stringgrade, Stringtinme, Stringpl ace) throws
Renot eExcepti on;
/**
* CGet syllabus of a course.
* @aramcourseid Course ID
* @aramyear Senester of the opened course
* @aramcl assid d ass nunber of the opened course. "0" if only one
class is hold in that semester
* @eturn Syllabus of the opened class, null if no such class
*/
String querySyllabus(String courseid, String year, String classid)
t hr ows Renot eExcepti on;

52

/**
* Query departnents avail abl e i n NCNU now
* @eturn Array of departnent short nane
*/
String[] queryDepartnent() throws RenoteException;
/**
* Send previous query result to an enmail account
* @aramenail The email account where query result should be sent
* @eturn "ok" if success, error nessage if fail
*/
String sendQueryResult(String enmail) throws RenoteException;
/**
* Query rul e about howto graduate froma depart nent
* @ar am dept Nare Short nane of the queried departnent
* @eturn Rul e about howto graduate fromthe queri ed departnent, null
if no such depart nent
*/
String queryRul e(String dept Nane) throws RenoteException;
/**
* Query if we are in prepare course sel ection period
* @eturn true if in prepare period, false if not
*/
bool ean i nPrepare() throws RenoteExcepti on;

}

/**

* RM Interface definition for Authentication server

*/

public interface NCNU ext ends NCNUCourse, java.rm.Renote {

/**

* Request a student session.

* @aramstudent| D Student I D for NCNU

* @ar am password Password

* @eturn Renote NCNUSt udent object for the session, null if fail
*/

NCNUSt udent | ogi nStudent (String studentl D, String password) throws

Renot eExcepti on;

/**

* Request a teacher session.

* @aramteacher| D Teacher I D for NCNU

* @ar am password Password

* @eturn Renpote NCNUTeacher object for the session, null if fail
*/

NCNUTeacher | ogi nTeacher (String teacherl D, String password) throws

Renot eExcepti on;

/**

* Get error nessage for previous operation.

* @eturn error nmessage for previous operation
*/

String get Error Message() throws Renot eException;

}
public interface NCNUSt udent extends NCNUCourse, java.rn.Renote {
/**
* Get wel cone nessage for the student
*/
String sayHel l o() throws Renot eException;
/**

* Change password for the student
* @ar am ol dPassword O d password

53

* @ar am newPasswor d New password
* @eturn "ok" if success, error nessage if fail
*/

String changePassword(String ol dPassword, String newPassword) throws

Renot eExcepti on;

/**
* Change personal information
* @aramattr (

,)
* @eturn " ok"
*/
String changePerson(String[] attr) throws RenoteException;
/**

* Get personal information
* @eturn (
)
*/
String[] getPerson() throws RenoteException;

/**
* Get error nessage of previous request
*/
String get ErrorMessage() throws Renot eException;

/**

* Query scores of a senester
* @aramacaYear Senester

* @eturn array of (,) appened with
*/
String[][] queryScore(String acaYear) throws Renot eExcepti on;
/**

* Query courses which the student can but not yet select for current
senest er

* @eturn array of (

)
*/
String[][] queryUnsel ect edCourse() throws RenoteException;
/**

* Query courses which has been selected for current senester
* @eturn array of (

)
*/
String[][] querySel ectedCourse() throws Renot eException;
/**

* Add a course for this semester

* @aramcid Course ID

* @aramc Cass ID

* @eturn "ok" if success, error nmessage if anything wong

*

/
String addCourse(String cid, String c) throws RenoteException;

/**

* Drop a course

* @aramcid Course ID
* @aramc Cass ID

* @aramcredit credits of the dropped course
* @ar am cor et ype coretype
* @eturn "ok" if success, error message if anything wong

54

*/
StringdropCourse(Stringcid, Stringc, int credit, int coretype) throws
Renot eExcepti on;
/**
* Check if enough credits has been selected by this student
* @eturnnull if credit isenough, warni ngnessageif needs norecredit

*
St/ri ng warnCredit () throws RenoteException;
* %
/ * Get hint about how many credits are needed to graduate
*
St/ri ng getCreditH nt() throws RenoteException;
* %
/* Cet hints about how many core course credits are neede to graduate
*
St/ri ng[] getCoreHint() throws RenoteException;
* %
: * CGet note about the rules of course selection of this senester
*
St/ri ng get Note() throws Renot eException;
* %
/* Get name of the student
*
St/ri ng get Nane() throws Renot eExcepti on;
* %
/* Cet grade of the student
*
/St/ri ng get G ade() throws RenoteException;
* %

* Check if we can sel ection now

* @eturn true if can select course, false otherw se
*/

bool ean canSel ect () throws Renpt eExcepti on;

/**
* Send previous query score result to an enmail account
* @aramemail Email account where score should be sent
* @eturn "ok" if success, error nessage if fail

*
St/ri ng sendQueryScoreResult(String enmail) throws RenoteException;
**
/ * Query courses which has been selected for current senester
* @eturn array of ()
St/ri ng[][] queryTabl eCourse() throws RenoteException;
i)ubl ic interface NCNUTeacher extends NCNUCourse,java.rm . Renote {
: * Wl cone nessage for the teacher session
St/ri ng sayHel | o() throws RenoteException;
/* @eturn "ok" if success, error nessage if fail
*/

String changePasswor d(String ol dPassword, String newPassword) throws
Renot eExcepti on;

/**

* Get personal information of the teacher

55

* @eturn ()

*/

String[] getPerson() throws RenoteException;
/**

* Change personal information
* @aramarray of (:)
*/
String changePerson(String[] attr) throws RenoteException;
/**

* Get error nmessage of previous operation

*/

String get Error Message() throws Renot eExcepti on;
/**

* Get courses opened by the teacher in this senester

* @eturn array of (
)

*/
String[][] get OpenCourse() throws RenpteException;

/**

’ ’ ’ ’

* Get information about students who have select the course inthis
senest er
* @aramcourseid Course ID
* @aramclassid Cass ID
* @aram acaYear senester
* @eturn array of (, . .)
*/
String[][] getSel ected(Stringcourseid, Stringclassid, Stri ngacaYear)
t hr ows Renot eExcepti on;
/**
* Set scores for an opened course in this senester
* @aramcourse Course ID
* @aramclass Cass ID
* @aram score array of ()
* @eturn "ok" if all success, error nessage if fail
*/

String setScore(String courseid, String classid, String[] scores)
t hrows Renot eExcepti on;

/**

* Get syllabus of a course in this senester
* @aram courseid Course ID

* @aramclassid Cass ID

* @aram acaYear senester

* @eturn null if fail, syllabus if succeed
*/

String getSyllabus(String courseid, String classid, String acaYear)

t hrows Renot eExcepti on;
/**

* Set syllabus for a course

@aramcourseid Course ID
@aramclass Uass ID
@ar am acaYear senester
@ar am syl | abus Syl | abus of the course
* @eturn "ok" if succeed, error nessage if fail

*/

String setSyllabus(String courseid, String classid, String acaYear,
String syllabus) throws RenoteException;

/**

* Ok * *

56

* Send mai | toall students who has sel ected the courseinthis senester
* @aramcourseid Course ID

@aramclassid Cass ID

@ar am acaYear senester

@ar amr et urnAddress Email address of the teacher

@ar am subj ect Subj ect of the nessage
* @aramcontent Content to be sent to all student
* @eturn "ok" if succeed, error nessage if fail

*/

StringsendMai |l (Stringcourseid, Stringclassid, Stri ngacaYear, String

returnAddress, String subject, String content) throws Renot eException;
/**

*
*
*
*

* Query students of a departnent according to their nane, student id
and grade
* @aram nane Nane of a student
* @aramstul D Student 1D
* @aramgrade G ade of student
* @eturn array of (studentid, name, grade)
*/
String[][] queryStudent (Stringnane, StringstulD, Stringgrade) throws
Renot eExcepti on;

/**

* Query historical score information about a student

* @aramstul D Student ID

* @eturn A string which describes the historical information about

the studentid

*/

String queryStudent Course(String stulD) throws RenoteException;
/**

* Check if teacher can input score now

* @eturn true if can input, false if can't

*/

bool ean canScore() throws Renot eException;
/**

* Query student's rank

* @aramdept Departnent's nane

* @aram grade Student grade

* @ar am senest er

* @eturn String of rank information

*/

String queryRank(String dept, String grade, String senester) throws

Renot eExcepti on;

}
A.2 Applet Functions

Roles of users in our system are defined as student, teacher and the public. Their
accessi ble functions are composed with the following features:

® Query course

Query conditions can be any AND combination of department name, core course
type, course grade, classroom, course name, teacher name, semester and course time.
Course information and syllabus are presented in the same page to ease usage. Query

result can be mailed back to an Internet mail account.

57

{_,ﬁ'a =T

LT e

AETEE |ETR < |SelEhl (25 | Fik I%%ﬁ 'I = |
e | LGl | EEHY I852 it 2 I

2 210008 ST zm

4ahe AIEII Fﬁﬁfﬁ

FEIERLEE | FeTas® | sEmEmrssd | e |
FRE A RiEiE 1251 Lo BFE HB = £ AR HEE
M E 040024 BERIEE—() B 1 Sef B30l =R 1 42 -
FRECFR 040024 FEEIESE—(T) P She B301 RiEIr 41 48
FErFE D40024 EFEIEZE—(T) L 4fs B30l $BFLE 44 50
FRITFR 040024 FEFEIESE—(T) s 7| led B301 IEESS 43

3 2fedd Al02 ZEITHF 45
3

=T 210010 _ETE&?%EH%(F)

1
1
1
1
1
1
1
1

= mmz = Epf e il 2
F 210013 Eﬁaﬁﬁm JAEESE 3 2osfp AL02 $§ﬂ<T¥
2 210020 SHEREREEGGRESED B 3 4fch Al0l MERE 1 54

EREEH D) (N rEEESTEH)

: fifﬁ%?..ﬂ—ﬁﬂ&i FEEANLIZER Sl MERE - FIEER
{’fﬁ’%ﬁﬁﬁlﬁféﬂﬁﬁ’ﬁhﬁﬁfﬁ@%ﬁ%ﬁﬁ‘ L RiIZE
; : ﬁ%i’ﬁ%,jﬂ_ﬁ %ﬁ%&ﬁﬁi*ﬁmi%gﬁ

H1E
Eﬁi?‘““faﬂit'i Jll¥$mELAE¥Z&EF£ﬂﬁIﬁ
SIEP e BRORT () Z SRRl I

H
iﬂ*

.,.
e 4

[Warning: Applet Window

Figure A-1. Query course.
® Query score
Query scores of courses in a semester, and can mail query result to an Internet
mail account. Total credits, got credits, and average score are listed below courses.

Any fail scoreswill be marked as red numbers.

58

Bl erra—ennaas
WERCLER [s62
EEEIEE—(T) 1 70
B et 2 43
TR 3 67
sTEEEER(T) 378
oy 30070
BRI AR () 3 100
R BrE 3 64
gt K Bt e 3 90
(e a 21
f=ECE S 19
LR RS 74.0
BAIEE: FET AR R
[Warning: Appletwmdow

Figure A-2. Query score

® Course selection

The system groups courses in current semester by mandatory, optional, core and
selected courses. The courses that have been selected or can't be selected by a student
won't be prompted. Other functions, such as selection suggestion, conflict notification,
mandatory course auto selection, capacity limitation and selection priority, are also in-
cluded.

59

EEstnE

ERERBIFRS

BT 7 & BISC [[y] dakdf E102

BEERA TENTHER BEEBE L EEA RS
[T A 1 PRI ETan Sl s 2gh AlDS |PSLA 2 TR 1) 90 FaR dab A0S

SRR 7 SR Ty PRERIE e A205
AIFE 2 WU T BAELL 2ef A203
SRR 2 I (T AFEERR 2gh Az02
SELR 3 EI—T) BB 2cdsd A6
AIFE 3 T EEE ke A4
SRR 3 BT BT 2eScd AlD3
FEER 2 BT BE 3gh A203

< J

Bi% ; BEETEERWET) S0 i

|

HEnd g IEREUES T BT 20d A207
HEFE 2 SRR EEF a3 Al

<

LT # 3 EFa%E S 2ncg 4206

LT 3 AR R 3hod A105

FESERR 2 AR REsRE e FFETF san 2
FEEFT 2 SETEELE T FEE 10h 4203
FEsFr 2 R ICBA® T EFF 3hidab A10
TTE 2 EIERAFELE RS A g A
HERT 3 BERHE BT arch Ao
Bi# 2 EEEFEIEEE EE s
Bl 2 @EHT BEE sgh az0z
HEik# 1| EERENEEREETT EH 4
B » EMEEaE Bt T BEE 5.

| | H

B

EiRRE

BHE A 3 HREEEN HEH 1ghor Ad03
Bk 2 SR RSN FIER 240 A202
TR 3 RS LR S0P 2hed AL
ToRF 3 BEPE T BRI sfgh A103
dARE 2 2RTIRME FR000E 4gh A103
TR 2 BEEREN B 4 A001

|

)
==

BER 5 PR B R M) BER dhdbed

EAFRHEZ M 1B (RERATE)

BEE (B BaE scd
BEFE 0 f2F BEE 1gh
BEE 0 BF = 1oh
BEE 0 BE BHE Lof

EEE 0 28 BET 1gh
BEE 0 2T BEE 15

MREE 0 BE #kE o
BEE) BE BIEE Lof

Az 0 EJ= #E 1k A0t
A= 0 EI= EFE 304 4001
FEANNE 0 EI= BEE 5ab A207
EANE 0 EN= #E 2jk Az07

Bi

o7 | Saieih) R 1cs B30
SIE 2 BAVNRTPRICE ST o Al0
WIR 3 #ils T FBIE 2fpad Al02
EIR 3 HESEh T MES dabe A101
BIF 3 BB D SER 1ghzh AL02
BIF 3 SAAAEEE RS HEE
EIF 3 BEAEER MR 205z AL02
BT 3 FURRE EHGEIERER) PR

FR BT R EELRIEI0%ES

Fi

® School timetable

gure A-3. Course selection.

VTSR _CRRE

IR (T
EIRTAR e A

R (T

FrEREREN T)

R AR ()
R e
R RIER

R e A =R

S5 =

1 EB301
A104
A102
A101
Al02
A101
A102

Al01

2
3
3 ahc
3 h

3 hed

3

3

fzh

Fi

gure A-4. School timetable

® Student persona information management.

60

R BeifE) L
Pttt
A
TrE
T
I
EEERE [130
mALE |

HEE | AVt

Figure A-5. Manage student personal information

® Change password

f=i EaifE A ERE
ST

T v

HEST TS
me | B |

Warning: Applet Window

Figure A-6. Change password

® Course management

avze

2 HARAR SR T

& FaE 2o FiESHE BFfE HhES

fﬁ%&

135021 3
%Ifﬁi 210005 3 PEBEEESH 1fzh f—Lng 1

GiThE | RAGRIENE | =RRRAEN | FEET
ﬁ?arning: Applet Window

Figure A-7. Course Management

61

ey A2 RS (— 2 S RE

Hmm] LU B Cirl- CROCH- VA CopyfPaste ISR TIFRYES 1

I EHir RS S TIEE R BT
FEIZEimaE: 210005
Fr SRR LR PR TR —)

EENpe e Intruduct}nn to Programming(1) . N
WAl siER BESEE. L 25803 B LME
FEEESE . ERf—T 2584
FEERREL RHRET= ﬁﬁllgﬁ
ZHT,: Homework 50%, Quiz 20%, Final Project 30%
#RlE . Hanlv & anfman Prublem Solving and Frogram Design in C,

Second Edition, hddison Weslew, 1996, F%
EEEE.

1., Corrivean, &4 Step-by-3tep Guide to C Progzrawming,
Prentice-Hall, 1998, Sarft

2. Kernighan & R1tch1e The C Programming Langnage,

) Second Edition, 1088, i 3R

FRIZHEE .

Basic Computer Concepts
Cownter now and then
Computer hardware
Software development process
C Frogram Develnpment on UInix
Text Editor: vi, joe,emacs
Compiler: gcc
Other Comwands: email, tar,nudecode, nnencode
C Frogramming Languace
Overview of C
Input/Output Operations
Arithmetic and Data Twpes

|4
FEE | AV

[Warning: Applet Window

Figure A-8. Input syllabus.

%’I? 86321016
ELH 86321017
ELH 86321018

ETEF s63z21010 2EFE
BETHE 86321020 BETF
ELE 86321021 =R
E L5 86321023 FBEE
EH 15 86321024 AL
ETE 86321027 EBED
ETEF 6321028 EEE
EHTEF 86321020 RIAHME

BETF 86321030 HERA
HLHE 86321031 EFE
BT.5 86321033 MBS
ETH 86321034 2FEE
HTH an3zl037 EiE
EHTE 86321038 BREE
BHTH 86321030 FfEDS
ELHE 86321040 #5150
BT 86321042 FHH
EHLF 86321043 FFaghE
S5 96321045 [EAlH
EHLHE 86321046 SRiER
B LF 86321047 #F
BHTH 80321050 =
EHTH 86321051 {HgE
BHTH 86321054 =
HH46 A, —

'.

'.

'.

'.

'.

'.

'.

'.

'.

'.

'.

'.

'.

'.

'.

'.

k

2

Figure A-9. Query information about studentsin a course

62

B TR SR — iRt

IEgRE [ssvu@csie nonn.edu . tw
Il [EEELFREISFRECESEE
Pz
Fa 2 F AT E

http fluww . csie nenn.edu, twf~ssvulconrsedfprosrannings/

S (TR

y nill
B | AuiE |
[Warning: Applet Window

Figure A-10. Malil to studentsin acourse

® Query study status of studentsin the same department.

[E Tt ishitin

s A AR

= B “|maps | mug |
=Rl o | BB |

85213507 HEBFER 2]
86213501 BEEH 2
86213502 THEFGE 2
56213504 HEREE 2
35213505 SRIEHH 2

26213508 ZEEE 2
36213507 TRGEnE 2
86213508 F=HER 2
86213509 HEEdR 2
36213510 B E= 2
26213511 %ﬁﬂl&z

86213512 B! hd
A %:_ AR =
135006 3£ B e

135007 122 EEREETEm —

135009 342 1T B EH SR

135017 1EH Eﬂ:%ﬁﬂﬁfiﬁ%_ I

135019 3E§i e ERs Bt et

s 1 B

S EA RS | ERHMEERAR I .

135000 3422 S EE

135002 1% BT

135004 3£2 B E R

135008 142 HFEHEn — a
135011 3£ :ftiﬁ%ﬁﬁ}ﬁéﬁ% =0 M
il a2

[Warning: Applet Window

Figure A-11. Query study status of students in the same department.

63

® Query ranks of studentsin asemester.

P Bt S

a7 B e R

AAEE [BIF -|ER (2 ~|BEm Bl
: saiz thEER S S 51 B

2632 1 E1/30 §5.90 N
26321 5 2/39 81.85

26321 E 3739 80,79

26321 1 4/30 70.00 fHEES

26321 F 5/39 78.52

26321 [6730 77.03

26321 i 7/30 7757

26321 = 8/30 77 .32

26321 T 9/39 77,10

26321 B 10/39 76,16

26321 117430 74,80 fREIED

26321 FO12/50 74,70 HEIED

26321 £ 13/30 73.88

2632 1 E 14/39 73.55

2632 1 £ 15/30 72.80

96321 16730 72.65 EESZ5

96321 E 17430 71.55 1EE3ES =
26321 EO18/30 71.47 fEES5EL

26321 5 10/30 6084 REIESD

2h321 L 20/30 6O 44

26321 Fo21/30 6924 iEERES

26321 P 22{30 6 .02 FHESEL

26321 P 23/30 68 .47 HEIELD

26321 124430 67.00 fEERE

26321 i 25/30 66,85 EERES

26321 E 26{30 B6.65 HENE

]

Figure A-12. Query ranks of studentsin a semester.

64

M ESEZEHRE

B

AFEE (HTF I C|ass |7

| ERILEREE | BiEA

TERE =

210023 &
210047 0224
210030 3
210031 3
210037 3E5
040037 3253
210035 324
210025 3
210036 324
210002 3Ea
210005 3y
210011 3
210029 325
210038 1284
210003 32
210008 32
210016 32
210022 3
210012 32
210009 325
210015 384y
210023 12

4

DA
RARB(T)
e
PERZR
VRS
E—(T)
Hr—()

SFE R e
e

EpE
Eraat—)
=t ()
o i
e

S —)

WS (T)
ZH e (—)
e e
B R R ()
STER

Y ETE

B ERER

@ 1 Unzigned Java Applet 'Window

Figure A-13. Query graduate rule of a department.

65

Appendix B Data Analysis of Academic I nformation

System

B.1 E-R Diagram

(0,

» N)

1)

» N)

v 1)

66

B.2 Relational Database Schema

The relationa database schema of an academic information listed below follows
the syntax of Microsoft SQL Server.

create table college /* */

(

colid char(1) not null, /* */

nane varchar (10) not null, /* */
primary key(colid)

go
create tabl e departnent /* */
(
deptid char(2) not null, /* */
colid char(1) not null, /* */
degree varchar(20) not null, /* */
gdegree varchar(20) not null, /* */
cnhanme varchar (40) not null, /* */
enanme varchar (40) not null, /* */
snane varchar (10) not null, /* */
mncredit nuneric(3,0) not null, /* */
gmncredit nuneric(2,0) not null, /* */
pm ncredit nuneric(2,0) not null, /* */
dm ncredit nuneric(2,0) not null, /* */
note text null, /* */

primary key (deptid),
foreign key(colid) references coll ege

)
create index dept_id ON departnent (deptid)

go
create table student /* * [

(

studentid char(9) not null, /* */

deptid char(2) not null, /* */

name varchar(10) not null, /* */

birthday char(7) null, /* */

sex char(1) not null, /* */

grade char(1) not null, /* */

type varchar (30) not null default ' B */
status char(1l) not null default 0O, /* */
| eavedate char(7) null, /* */

emai | varchar(40) null, /* */
idchar(10) null, /* */

tel varchar(14) null, /* */

citizen varchar(12) null, /* */

addr1 varchar(80) null, /* */

addr 2 varchar (80) null, /* */

thesi s varchar(120) null, /* */

tscore nuneric(5,1) null, /* */

67

di pl omai d char(4) null, /* */

entrydoc varchar(40) null, /* */

entrydi pl oma varchar(40) null, /* */

password varchar(20) null, /* */

entrydate char(5) not null, /* */

ograduate char (1) not null default '1', /* ,1 .0
oentrydoc varchar(40) null, /* */
ograde char(1) null, /* */

ogr aduat edoc varchar(40) null, /* */
equal doc varchar (40) null, /* */
pracscore nureric(3,0) null, /* */

| eaver eason varchar (30) null, /* */

dept group varchar(20) null, /* */

zi pcode varchar(5) null, /* */

pnane varchar(20) null, /* */

dormum varchar(8) null, /* */

dornfee nuneric(6,0) not null default 0O, /* */
dor ndeposit char(1) not null default 'N, /* */
account char(14) null, /* */

age nuneric(3,0) null, /* */

alive char(1) null default 'Y, [* */

tuition nuneric(6,0) null default 0, /* */

i ncidental nuneric(6,0) null default 0, /* */

basic nuneric(6,0) null default 0, /* */

i nsurance nuneric(5,0) null default 0, /* */
overseas nuneric(5,0) null default 0, /* */

ddf ee numeric(5,0) null default 0, /* */
creditfee numeric(6,0) null default 0, /* */

| angf ee nuneric(5,0) null default 0, /* */
conpfee nuneric(5,0) null default 0, /* */

primary key (studentid),
forei gn key(deptid) references depart nment

Lreate i ndex student id ON student (studentid)
go
create table teacher /* */
(
teacherid varchar(10) not null, /* */
deptid char(2) not null, /* */
name varchar(10) not null, /* */
sex char(1) not null, /* */
birthday char(7) null, /* */
isfulltime char(1) not null default "1', /* */
position varchar(8) not null, /* */
parttime varchar(40) null, /* */
overtine nuneric(2,0) default 0, /* */
hiredate char(7) not null, /* */
status char(1) not null default 0, /* */
password varchar(20) null, /* */
emai | varchar (40) null, /* email */
account char(14) null, /* */

68

*/

addr1l varchar(80) null, /* */
addr 2 varchar (80) null, /* */

phone varchar(14) null, /* */
primary key (teacherid),
foreign key(deptid) references depart nent

)

create index teacher_id ON teacher(teacherid)
go
create table course /* */

(

courseid char(6) not null, /* */

cname varchar (50) not null, /* */

enane varchar(80) null, /* */

grade char(2) null, /* */

credit nurmeric(1,0) not null, /* */

coretype char(1) not null default 0, /* */
practice char(1) not null default 0, /* */
type varchar(8) null, /* , query cache */
primary key (courseid)

)

create index course_id ON course(courseid)
go

create table precourse /* */
(
courseid char(6) not null, /* */
precourseid char(6) not null, /* */
start nuneric(3,0) not null, /* */
stop nuneric(3,0) not null default 999, /* */

primary key (courseid, precourseid),
foreign key (courseid) references course
foreign key (precourseid) references course

)

create index precourse_id on precourse(courseid)
go

create table require /* */
(
courseid char(6) not null, /* */
deptid char(2) not null, /* */
start numeric(3,0) not null, /* */
stop nuneric(3,0) not null default 999, /* */

primary key (courseid, deptid,start, stop),
foreign key (courseid) references course,
foreign key (deptid) references departnent

)

create index require_id on require(courseid)

create index require_deptid on require(deptid)

go
create table assist /* */
(
courseid char(6) not null, /* */
deptid char(2) not null, /* */
start nuneric(3,0) not null, /* */
stop nuneric(3,0) not null default 999, /* */

primary key (courseid, deptid, start, stop),

69

foreign key (courseid) references course,
foreign key (deptid) references departnent
)
create index assist_id on assist(courseid)
create index assist_deptid on assist(deptid)

go
create table dmajor /* */
(

courseid char(6) not null, /* */

deptid char(2) not null, /* */

start nuneric(3,0) not null, /* */

stop nuneric(3,0) not null default 999, /* */

primary key (courseid, deptid, start, stop),
foreign key (courseid) references course
foreign key (deptid) references departnent

)

create index dmajor_id on dnajor(courseid)
create index dmajor_deptid on dmajor (deptid)
go

create table classroom/* */

(

cl assroom d varchar(8) not null, /* */
capacity nuneric(3,0) not null, /* */

equi prent char (1) default 0, /* */

deptid char(2) null, /* */

primary key (classroonid)

)

create index classroomid on classroon(classroom d)
go
create table conduct /* */

(

studentid char(9) not null, /* */

year char(4) not null, /* */

score nuneric(3,0) not null default -1, /* */
average nuneric(6,2) null, /* */

rank varchar(7) null, /* */

deptid char(2) null, /* */

grade char(1) null, /* */

fail pass nunmeric(2,0) null, /* */
primary key (studentid, year),

foreign key(studentid) references student

)

create index conduct_sid on conduct (studentid)

go

create table coremn /* */

(
coretype char(1) not null, /* */
mncredit nuneric(2,0) not null, /* */
primary key (coretype)

)

go

create table opened /* */

(

courseid char(6) not null, /* */

70

year char(4) not null, /* */

class char(1) not null default 0, /* */

requi renent char(1l) default 0, /* */

time varchar(8) null, /* */

pl ace varchar(16) null, /* */

eval uation char(1) null, /* */

hours nuneric(1,0) null, /* */

syllabus text null, /* */

[imt nuneric(3,0) not null default 0O, /* */

not e varchar (40) null, /* */

teachers varchar(42) null default "', /* , query cache */
students nuneric(3,0) not null default 0, /* , query cache */

primary key (courseid,year, cl ass),

forei gn key(courseid) references course
)
create index opened_all on opened(courseid, year, cl ass)
create i ndex opened_year on opened(year)

go
Create table outcredit /* */
(
studentid char(9) not null, /* */
equal s char(6) null, /* */
credit nuneric(1,0) null, /* */
school varchar(30) not null, /* */
year char(4) not null, /* */
score nuneric(3,0) not null default -1, /* */
cname varchar (40) not null, /* */
ename varchar (80) null, /* */

primary key(studentid, year, cnane),
forei gn key(studentid) references student

Lreate i ndex student _id ON outcredit(studentid)
go
create table rest /* */
(
studentid char(9) not null, /* */
year char(4) not null, /* */
period nuneric(1,0) null, /* () */
restdoc varchar(20) null, /* */
primary key (studentid, year),
forei gn key (studentid) references student
)
go
create table selected /* */
(
courseid char(6) not null, /* */
year char(4) not null, /* */
class char(1) not null default 0, /* */
studentid char(9) not null, /* */
score nuneric(3,0) null default -1, /* */
mandat ory char(1) not null default 'N, /* */

primary key (studentid, courseid, year),
foreign key (courseid,year, class) references opened,

71

foreign key (studentid) references student
)
create index selected who on sel ected(courseid, year, cl ass)
create index selected cid on sel ected(courseid, studentid)
create index selected sid ON sel ected(studentid, year, cl ass)

go

create table teaching /* */
(
courseid char(6) not null, /* */
year char(4) not null, /* */
class char(1) not null default 0, /* */
teacherid varchar(10) not null, /* */

primary key (teacherid, courseid, year, cl ass),
forei gn key(courseid, year, cl ass) references opened,
forei gn key(teacherid) references teacher

)

create index teaching_tid on teaching(teacherid)

create index teaching _cid on teachi ng(courseid,year, cl ass)

go

create table exenpt /* */

(
studentid char(9) not null, /* */
courseid char(6) not null, /* */

primary key (studentid, courseid),
foreign key(studentid) references student,
forei gn key(courseid) references course

Lreate i ndex exenpt_sid on exenpt (studentid)
go
create table transfer /* */
(
studentid char(9) not null, /* */
year char(4) not null, /* */
fromdep char(2) not null, /* */
todep char(2) not null, /* */
bef oregrade char(1) not null, /* */
aftergrade char(1) not null, /* */
primary key (studentid, year),
forei gn key(studentid) references student
)
go
create tabl e whoassist /* */
(
studentid char(9) not null, /* */
deptid char(2) not null, /* */
primary key (studentid, deptid),
foreign key (studentid) references student,
foreign key (deptid) references departnent
o
create tabl e whodouble /* */
(
studentid char(9) not null, /* */
deptid char(2) not null, /* */

primary key (studentid, deptid),

72

foreign key(studentid) references student,
forei gn key(deptid) references depart nment

)
go

73

