
www.elsevier.com/locate/csi
Computer Standards & Interf
A hybrid particle swarm optimization algorithm for optimal task

assignment in distributed systems

Peng-Yeng YinT, Shiuh-Sheng Yu, Pei-Pei Wang, Yi-Te Wang

Department of Information Management, National Chi Nan University, Nantou, Taiwan

Received 30 December 2004; received in revised form 17 March 2005; accepted 20 March 2005

Available online 10 May 2005
Abstract

In a distributed system, a number of application tasks may need to be assigned to different processors such that the system

cost is minimized and the constraints with limited resource are satisfied. Most of the existing formulations for this problem have

been found to be NP-complete, and thus finding the exact solutions is computationally intractable for large-scaled problems.

This paper presents a hybrid particle swarm optimization algorithm for finding the near optimal task assignment with reasonable

time. The experimental results manifest that the proposed method is more effective and efficient than a genetic algorithm. Also,

our method converges at a fast rate and is suited to large-scaled task assignment problems.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Task assignment problem; Distributed systems; Hybrid strategy; Particle swarm optimization; Genetic algorithm
1. Introduction

In a computation system with a number of

distributed processors, it is desired to assign applica-

tion tasks to these processors such that the resource

demand of each task is satisfied and the system

throughput is increased. However, the assignment of

tasks will also incur some costs such as the execution

cost and the communication cost. The task assignment

problem (TAP) is to find an assignment of tasks which

minimizes the incurred costs subject to the resource
0920-5489/$ - see front matter D 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.csi.2005.03.005

T Corresponding author. 303 University Rd., Puli, Nantou 545,

Taiwan. Tel.: +886 49 2910960; fax: +886 49 2915205.

E-mail address: pyyin@ncnu.edu.tw (P.-Y. Yin).
constraint. There exist polynomial time exact algo-

rithms for solving the TAP in two-processor distrib-

uted systems [1]. However, the general n-processor

TAP has been found to be NP-complete [2]. There-

fore, finding exact solutions to large-scaled TAP is

computationally prohibitive.

The existing approaches for tackling the TAP can

be divided into three categories. (1) Mathematical

programming approaches [3–5] using column gen-

eration or branch-and-bound techniques can solve the

problem more efficiently. (2) Customized algorithms

[6–10] have been developed for providing exact

solutions in specific circumstances, such as the

distributed systems with linear processor array,

processor mesh, and partial k-tree communication
aces 28 (2006) 441–450

Table 1

Notations used in our problem formulation

xik Decision variable: xik =1 if task i is assigned to

processor k, and xik =0 otherwise

yijkl Decision variable: yijkl =1 if task i is assigned to

processor k and task j is assigned to processor l,

and yijkl =0 otherwise

n Number of processors

r Number of tasks

eik Incurred execution cost if tasks i is executed on

processor k

cij Incurred communication cost between tasks i and

j if they are executed on different processors

mi Memory requirements of task i from its execution

processor

Mk Memory capacity of processor k

pi Processing requirements of task i from its

execution processor

Pk Processing capacity of processor k

P.-Y. Yin et al. / Computer Standards & Interfaces 28 (2006) 441–450442
graph. (3) Meta-heuristic algorithms involving

genetic algorithms (GA) [11–13] and simulated

annealing (SA) [14,15] have been used to derive

approximate solutions with reasonable time.

The development of meta-heuristic optimization

theory has been flourishing during the last decade.

Many new search paradigms such as tabu search [16]

and ant colony optimization [17] have shown their

efficacy in solving computationally intensive prob-

lems. This suggests the exploration of the potentials

for solving the TAP using new meta-heuristics.

Recently, Kennedy and Eberhart [18] developed a

new evolutionary algorithm called particle swarm

optimization (PSO). The PSO optimizes an objective

function by iteratively improving a swarm of solution

vectors, called particles, based on special management

of memory. Each particle is modified by referring to

the memory of individual and swarm’s best informa-

tion. Due to the collective intelligence of these

particles, the swarm is able to repeatedly improve its

best observed solution and converges to an optimum.

The PSO has shown successful applications in many

domains, such as evolving weights and structure for

artificial neural networks [19], manufacture end mill-

ing [20], reactive power and voltage control [21], state

estimation for electric power distribution systems

[22], just to name a few. This paper presents a PSO-

based algorithm for conquering the TAP. A hill-

climbing heuristic is embedded in the PSO iteration to

expedite the convergence. The experimental results

manifest that the proposed hybrid PSO algorithm

outperforms a genetic algorithm on a large set of

simulated instances, and the performance difference is

more significant as the problem size is increased.

The remainder of this paper is organized as

follows. Section 2 formulates the TAP that will be

addressed in this paper. Section 3 presents the

proposed hybrid PSO algorithm in details. Section 4

reports the comparative performances and conver-

gence analysis. Finally, Section 5 concludes this work.
2. Problem formulation

In this paper, we consider the TAP with the

following scenarios. The processors in the system are

heterogeneous and they are capacitated with various

units of memory and processing resources. Hence, a
task will incur different execution cost if it is executed

on different processors. On the other hand, all of the

communication links are assumed to be identical and

some communication cost between two tasks will be

incurred if there is a communication need between

them and they are executed on different processors. A

task will consume some units of the resources from its

execution processor. The notations that will be used in

our problem formulation are listed in Table 1.

Our objective is to minimize the total execution and

communication costs incurred by the task assignment

subject to all of the resource constraints. Hence, the

considered TAP can be formulated as the following

0–1 quadratic integer programming problem.

Min Q Xð Þ ¼
Xr
i¼1

Xn
k¼1

eikxik þ
Xr�1
i¼1

Xr
j¼iþ1

� cij 1�
Xn
k¼1

xikxjk

 !
; ð1Þ

subject to
Xn
k¼1

xik ¼ 1; 8i ¼ 1; 2; . . . ; r ð2Þ

Xr
i¼1

mixikVMk ; 8k ¼ 1;2; . . . ; n ð3Þ

Xr
i¼1

pixikVPk ; 8k ¼ 1;2; . . . ; n ð4Þ

xika 0; 1f g; 8i;k ð5Þ

P.-Y. Yin et al. / Computer Standards & Interfaces 28 (2006) 441–450 443
The first and second terms in the objective function (1)

represent the total execution cost and communication

cost, respectively, incurred by the assignment

X={xik}1ViVr ,VkVn. Constraint (2) states that each task

should be assigned to exactly one processor. Con-

straints (3) and (4) ensure that the memory and

processing resource capacity of each processor is no

less than the total amount of resource demands of all of

its assigned tasks. The last constraint (5) guarantees

that xik are binary decision variables.

Since this formulation is an integer program with a

quadratic objective function and is computationally

prohibitive due to enormous computation efforts, its

transformations to linear programs have been pro-

posed [3,4]. Let yijkl be a binary variable and yijkl =1 if

and only if task i is assigned to processor k and task j

is assigned to processor l. The formulation Q(X) can

be transformed to the following 0–1 integer linear

program.

Min L Xð Þ¼
Xr
i¼1

Xn
k¼1

eikxikþ
Xr�1
i¼1

Xr
j¼iþ1

Xn
k¼1

X
lpk

cijyijkl;

ð6Þ

subject to
Xn
k¼1

Xn
l¼1

yijkl ¼ 1; 8 i; j ¼ 1; 2; . . . ; r

ð7Þ

Xn
k¼1

yijkl ¼ xjl; 8 i; j ¼ 1; 2; . . . ; r ; l ¼ 1; 2; . . . ; n

ð8Þ

Xn
l¼1

yijkl ¼ xjk ; 8 i; j ¼ 1; 2; . . . ; r ; k ¼ 1; 2; . . . ; n

ð9Þ

Xr
i¼1

mixikVMk ; 8k ¼ 1; 2; . . . ; n ð10Þ

Xr
i¼1

pixikVPk ; 8k ¼ 1; 2; . . . ; n ð11Þ

xik ;yijkla 0; 1f g; 8 i; j; k; l: ð12Þ

Exact solutions can be found using the new

formulation L(X) by mathematical programming
techniques such as branch and bound; however, it is

still time-consuming for deriving optimal solutions to

large-scaled problems. On the other hand, an alter-

native for solving TAP efficiently is to find approx-

imate solutions based on meta-heuristics. PSO has

been shown to successfully optimize a wide range of

nonlinear objective functions [19–22], the attractive-

ness of using PSO is due to the following features:

natural metaphor, simplicity, stochastic move, adap-

tivity, positive feedback, and high quality solutions.

Thus, we intend to further extend the application of

PSO and propose a PSO-based algorithm for tackling

the TAP.
3. Hybrid particle swarm optimization

The PSO algorithm was proposed by Kennedy and

Eberhart [18] in 1995. It is inspired by the behavior

of bird flocking and fish schooling. A large number

of birds/fishes flock synchronously, change direction

suddenly, and scatter and regroup together. Each

individual, called a particle, benefits from the

experience of its own and that of the other members

of the swarm during the search for food. The PSO

models the social dynamics of flocks of birds and

serves as an optimizer for both of continuous and

discrete functions. The convergence and parameter-

ization aspects of the PSO have been discussed

thoroughly [23–25]. It has also been shown that a

hybrid strategy which embeds a local optimizer such

as hill-climbing in between the iterations of a meta-

heuristic algorithm can improve the performance

significantly [26]. In light of this, we present a

hybrid PSO for solving TAP hereafter.

3.1. Particle representation and initial swarm

generation

In PSO, each particle corresponds to a candidate

solution of the underlying problem. Thus, we let each

particle represent a decision for task assignment using

a vector of r elements, and each element is an integer

value between 1 to n. Fig. 1 shows an illustrative

example for the ith particle which corresponds to a

task assignment that assigns five tasks to three

processors, and particlei,5=2 means that task 5 is

assigned to processor 2.

the ith particle:

particlei,5 = 2

1

3 2 1 2 2

2 3 4 5

Fig. 1. An example for the ith particle.

P.-Y. Yin et al. / Computer Standards & Interfaces 28 (2006) 441–450444
The PSO randomly generates an initial swarm of K

particles, where K is the swarm size. These particle

vectors will be iteratively modified based on collec-

tive experiences in order to improve their solution

quality.

3.2. Fitness evaluation

Each particle vector in the swarm is assigned a

fitness value indicating the merit of this particle

vector such that the swarm evolution is navigated by

best particles. Clearly, the objective value of Q(X)

(see Eq. (1)) can be used to measure the quality of

each particle vector. However, this value is discredited

if the particle vector violates at least one of the

constraints (2)–(5). In modern heuristics [26], infea-

sible solutions also provide valuable clue to targeting

the optimal solution. The degree of infeasibility for

trial solutions are measured and transformed to a

penalty which grows in proportional to the infeasi-

bility level, thus guiding the search toward feasible

space. Consequently, we devise a penalty function to

estimate the infeasibility level of a particle solution.

Since constraints (2) and (5) are always satisfied if our

particle representation scheme is adopted, the penalty

function is only related to constraints (3) and (4), and

it is given by

Penalty Xð Þ ¼ max 0;
Xr
i¼1

mixik �Mk

 !

þmax 0;
Xr
i¼1

pixik � Pk

 !
ð13Þ

Thus, the penalty function gives some penalties on the

assignment solution whose requested resource

exceeds the system capacity. The more the exceeding

resource demand is, the more the penalty is. The

fitness function of the particle vector can finally be

defined as

Fitness Xð Þ ¼ Q Xð Þ þ Penalty Xð Þð Þ�1 ð14Þ
Hence, the higher the fitness value is, the better the

quality of the particle vector is.

3.3. Particle vector modification

To simulate the bird flocking for food foraging,

the particle vectors are iteratively modified during the

PSO evolution. According to the fitness values of

these particle vectors, each particle remembers the

best vector it experienced so far, referred to as pbest,

and the best vector experienced by its neighbors. The

particle’s neighbors are defined as the particles within

its topological neighborhood in the solution space.

There are two versions for keeping the neighbors’

best vector, namely lbest and gbest. In the local

version, each particle keeps track of the best vector

lbest attained by its local topological neighborhood of

particles. In many applications, the neighborhood size

is set to about 15% of the swarm size. For the global

version, the best vector gbest is determined by any

particles in the entire swarm. Hence, the gbest model

is a special case of the lbest model. During each PSO

iteration, particle i adjusts its velocity vij and position

vector particleij through each dimension j by refer-

ring to, with random multipliers, the personal best

vector (pbestij) and the swarm’s best vector (gbestj, if

the global version is adopted) using Eqs. (15) and

(16) as follows.

vijpvij þ c1rand1 pbestij � particleij

� �
þ c2rand2 gbestj � particleij

� �
ð15Þ

and

particleijpparticleij þ vij ð16Þ

where c1 and c2 are the cognitive coefficients and

rand1 and rand2 are random real numbers drawn from

U(0,1). Thus, the particle flies through potential

solutions toward pbesti and gbest in a navigated

way while still exploring new areas by the stochastic

mechanism to escape from local optima. The cogni-

tive coefficients c1 and c2 represent the weightings

that pull each particle toward pbesti and gbest. Low

values let particles wander around their local neigh-

borhood, while high values cause particles to fly

toward, or pass, optimal solutions [18]. Many

applications set c1 and c2 each equal to 2.0. The

P.-Y. Yin et al. / Computer Standards & Interfaces 28 (2006) 441–450 445
particle’s velocity on each dimension is set restricted

by a maximum velocity vmax, which controls the

maximum travel distance during each iteration to

avoid this particle flying past good solutions. The

PSO algorithm is terminated with a maximal number

of iterations or the best particle vector of the entire

swarm cannot be improved further after a sufficiently

large number of iterations.

3.4. Hybrid strategy

Modern meta-heuristics manage to combine explo-

ration and exploitation search. The exploration search

seeks for new regions, and once it finds a good region,

the exploitation search kicks in. However, since the

two strategies are usually inter-wound, the search may

be conducted to other regions before it reaches the

local optima. As a result, many researchers suggest to

employ a hybrid strategy which embeds a local

optimizer such as hill-climbing heuristic in between

the iterations of the meta-heuristics [26]. In light of

this, we embed a hill-climbing heuristic in between

the iterations of the PSO.

The embedded hill-climbing heuristic proceeds as

follows. Given a particle vector, its r elements are

sequentially examined for updating. The value of the

examined element is replaced, in turn, by each integer

value from 1 to n, and retains the best one that attains

the highest fitness value among them. While an

element is examined, the values of the remaining

r�1 elements remain unchanged. The heuristic is

terminated if all the elements of the particle have been

examined for updating. The computation for the
1. Initialize.

1.1 Generate K particles at random.

1.2 Generate velocities vij, 1 ≤ i ≤ K and 1 ≤ j ≤ r

2. Repeat until a given maximal number of iterations

2.1 Evaluate the fitness of each particle.

2.2 Determine the best vector pbest visited so fa

2.3 Determine the best vector gbest visited so fa

2.4 Update velocities vij using (15) restricted by

2.5 Update particles, vectors using (16).

2.6 Improve the solution quality of each particle

Fig. 2. The HPSO algorithm for th
fitness value due to the element updating can be

minimized. Since a value change in one element

affects the assignment of exactly one task, we can

save the fitness computation by only recalculating the

system costs and constraint conditions related to the

reassigned task.

3.5. The HPSO algorithm

The details of the proposed hybrid PSO (referred to

as HPSO) algorithm are presented in Fig. 2. The

algorithm starts with an initial swarm of K particles.

Each particle vector corresponds to a candidate

solution of the underlying problem. Then, all of the

particles repeatedly move until a maximal number of

iterations have been passed. During each iteration, the

particle individual best and swarm’s best positions are

determined. The particle adjusts its position based on

the individual experience (pbesti) and the swarm’s

intelligence (gbest) as described in Eqs. (15) and (16).

To expedite the convergence speed, all of the particles

are further updated using the hill-climbing heuristic

before entering the next iteration. When the algorithm

is terminated, the incumbent gbest and the corre-

sponding fitness value are output and considered as

the optimal task assignment and the minimum cost.
4. Experimental results

We render the inter-task communication by a task

interaction graph (TIG), G(V,E), where V is a set of r

nodes indicating the r tasks to be executed and E is a
, where vij is randomly drawn from [0.0, 1.0].

 is achieved.

r by each particle.

r by the whole swarm.

a maximum threshold vmax.

 using the embedded hill-climbing heuristic.

e task assignment problem.

Table 2

The minimum costs obtained using the Lingo package and the used

CPU time

r n d Minimum cost CPU time

5 3 0.3 180.97 1 s

0.5 202.40 1 s

0.8 215.63 1 s

10 6 0.3 374.68 91 s

0.5 403.15 202 s

0.8 715.61 1746 s

Others Infeasible or unknown N90 h

P.-Y. Yin et al. / Computer Standards & Interfaces 28 (2006) 441–450446
set of edges specifying the communication require-

ments among these tasks. Fig. 3 gives an example of a

TIG where the communication requirements among

four tasks are specified. Here, we define the task

interaction density d of G(V,E) as

d ¼ jEj
r r � 1ð Þ=2 ; ð17Þ

where |E| calculates the number of existing commu-

nication demands in the TIG, and r(r�1)/2 indicates

the maximal number of communication demands

among r tasks. Therefore, the task interaction density

quantifies the ratio of the inter-task communication

demands for a TIG and can serve as one of the key

factors that affect the problem complexity. The other

key factors are the number of tasks (r) and the number

of processors (n).

The testing data set is generated according to

different problem characteristics. We set the value of

(r, n) to (5, 3), (10, 6), (15, 9), and (20, 12),

respectively, in order to testify the algorithm with

different problem scales. For each pair of (r, n), we

generate three different TIGs at random with density d

equivalent to 0.3, 0.5, and 0.8. Furthermore, 10

problem instances are generated at random for each

specification of r, n, and d. The values of the other

parameters are generated randomly: the execution cost

is between 1 and 200, the communication cost is

between 1 and 50, the memory and processing

capacity of each processor varies from 50 to 250,

and the memory and processing requirement of each

task ranges from 1 to 50. As such, we obtain a testing

data set of 120 problem instances for evaluating the

comparative performances of the competing methods.

In the following sections, all of the experiments are

conducted on a 2.4 GHz PC with 256 MB RAM.
task 1

task 2 task 4

task 3

Fig. 3. An example of TIG.
4.1. Exact solutions

To derive the exact solutions of the testing

problems, we develop a program using the commer-

cial Lingo package to solve the 0–1 linear program

formulation L(X) (see Eqs. (6)–(12)). The maximum

allowed CPU time for solving an instance by the

Lingo package is set to 90 h. The numerical results are

shown in Table 2. It is observed that the used CPU

time by Lingo to derive the exact solutions is

dependent upon two key factors, the value of (r, n)

and the value of d. As the numbers of tasks and

processors increase, the problem is more difficult.

Also, for a particular instance of (r, n), a TIG with

denser inter-task communications (i.e., with a higher

value of d) will incur more computations. When

Lingo fails to solve the linear program within 90 h, it

is terminated with an infeasible solution or an

unknown status and we discard such cases for further

comparison.

4.2. Comparative performances

In this section, we present the comparative

performances between the proposed HPSO and a

genetic algorithm (GA) because both of them are

population-based, evolutionary computation algo-

rithms. The GA uses the same coding scheme (see

Fig. 1) and fitness function (see Eq. (14)) as used by

the HPSO. The single-point crossover and bit-flipping

mutation are performed during the evolution. The

parameter values used in both of HPSO and GA are

optimally tuned by intensive preliminary experiments

to let the competing algorithms perform at the best

level. To be specific, the parameter setting used by

HPSO is (number of particles=80, c1=c2=2) and GA

(population size=80, crossover rate=0.7, mutation

Fig. 4. The swarms best solution in terms of the total cost obtained

by gbest versus the number of fitness evaluations.

P.-Y. Yin et al. / Computer Standards & Interfaces 28 (2006) 441–450 447
rate=0.1). Since the evaluation of fitness function is

the main source providing the guidance for targeting

the optimal solution and is also the most time-

consuming component for both algorithms, the

performance is evaluated as the minimum cost

obtained when the testing algorithms have run for a

specified number of fitness evaluations (here, we set

this number to 80,000). Moreover, both HPSO and

GA are stochastic-based algorithms and each inde-

pendent run of the same algorithm on a particular

testing problem may yield a different result, we thus

calculate the average cost over 10 independent runs of

each algorithm for every problem instance.

Table 3 tabulates the average derived costs

obtained using the two algorithms. It is observed that

for the whole problem category (r, n)= (5, 3), both

algorithms can derive exact solutions as reported by

Lingo (see Table 2), but GA needs more computation

time. For the other categories, the costs obtained by

GA are larger than those produced by HPSO. The

harder the problem is, the larger the cost difference

between the two algorithms, which means the

proposed HPSO algorithm is more scalable against

problem complexity. To clearly realize the superiority

of HPSO over GA, we conduct the matched pair t-test

on the cost differences and obtain t value as 3.967.

Since the confidence coefficient is 1.796 for the 95%

confidence interval over 12 cases, we observe that the

cost difference is statistically significant.
Table 3

The average derived costs and the used CPU times (in s) by GA and

HPSO over 120 problem instances which are classified into 12

categories

r n d GA PSO Cost

differenceCost CPU time Cost CPU time

5 3 0.3 180.97 8.64 180.97 2.36 0

0.5 202.40 9.00 202.40 2.56 0

0.8 215.63 8.16 215.63 2.32 0

10 6 0.3 436.32 10.78 376.11 4.62 60.21

0.5 501.05 10.82 403.15 4.50 97.90

0.8 806.21 11.04 719.55 4.32 86.66

15 9 0.3 889.37 18.08 705.20 9.34 184.17

0.5 1408.24 17.62 1221.02 9.20 187.22

0.8 1975.20 19.74 1740.22 9.54 234.98

20 12 0.3 1744.44 26.56 1431.39 14.30 313.05

0.5 2645.37 27.78 2269.32 15.44 376.05

0.8 3744.47 27.36 3400.52 15.40 343.95

The cost differences between the two algorithms are also reported.
4.3. Convergence analysis

To analyze the convergence behavior of the

proposed algorithm, we monitor the variations of

experiences learned by the entire swarm (as in gbest)

and individual particles (as in pbest). Fig. 4 displays a

typical run of the HPSO for solving a problem

instance with (r, n, d)= (20, 12, 0.8). The swarm’s

incumbent best solution in terms of the total cost

incurred by the task assignment obtained by gbest

decreases as the number of fitness evaluations

increases. This validates the correctness of the

proposed fitness function (Eq. (14)) which navigates

the evolution of the particle swarm toward quality

solutions.

We further testify whether the entire swarm

evolves to the same optimization goal and the final

high-quality solution is a consequence of the collec-

tive intelligence instead of the movement of a lucky

particle. We propose the information entropy for

measuring the similarity convergence among the

individual pbest experiences as follows. Let probj(s)

be the probability of the individual’s decision that

assigns the jth task to the sth processor, viz.

probj sð Þ ¼ Pr pbestij ¼ sji ¼ 1;2; . . . ;K
n o

: ð18Þ

The information entropy on the decision with respect

to the assignment of the jth task is given by

entropyj ¼ �
Xn
s¼1

probj sð Þlog2 probj sð Þ
� �

: ð19Þ

Fig. 5. The average particle entropy over all pbest versus the

number of fitness evaluations.
Fig. 7. The histogram of the optimum solutions obtained from 1000

repetitive runs of HPSO.

P.-Y. Yin et al. / Computer Standards & Interfaces 28 (2006) 441–450448
The smaller the value of entropyj, the larger the

number of particles that make a consensus decision by

assigning the jth task to the same processor. To

provide an overall measure, we compute the average

particle entropy value as

entropy ¼
Xr
j¼1

entropyj=r: ð20Þ

Fig. 5 shows the variations of the average particle

entropy value for a typical run on the problem

instance with (r, n, d)= (20, 12, 0.8). It is observed

that the entropy value drops as the number of fitness

evaluations increases, meaning that the particle

individual experience is resorting to the same high-

quality solution as the swarm converges.

4.4. Worst-case analysis

Since the HPSO is a stochastic algorithm, that is,

each separate run of the program could result in a
Fig. 6. The worst-case analysis versus the number of repetitive runs

of HPSO.
different result. It is desired to know the worst

performance one may obtain if the HPSO is adopted.

We conduct the worst-case analysis which is set up as

the worst optimum solution we could get after a

specific number of repetitive runs of the HPSO. Fig. 6

shows the worst-case analysis where the HPSO is

executed on a problem instance with (r, n, d)= (20,

12, 0.8) for 1000 times. The curve is intuitive since

the optimum solutions obtained from the repetitive

runs of the HPSO algorithm follow a normal

distribution (see Fig. 7). The result from the worst-

case analysis is useful when the user requests a

guarantee for the quality of the optimum solution. For

example, if the user requests a guarantee for a solution

with cost less than 3250, he/she can obtain such a

solution by executing the HPSO for less than 100

repetitive runs since in the worst case, as shown in

Fig. 6, the solution with cost less than 3250 can be

obtained after 100 runs of HPSO, but in general case,

most trial runs in 100 repetitions will obtain a better

solution.
5. Conclusions

In many problem domains, we are required to

assign the tasks of an application to a set of distributed

processors such that the incurred cost is minimized and

the system throughput is maximized. Several versions

of the task assignment problem (TAP) have been

formally defined but, unfortunately, most of them are

NP-complete. In this paper, we have proposed a hybrid

particle swarm optimization (HPSO) algorithm which

finds a near-optimal task assignment with reasonable

P.-Y. Yin et al. / Computer Standards & Interfaces 28 (2006) 441–450 449
time. The computational experience manifests that the

HPSO reports exact optimal solutions verified by a

commercial linear programming software for a number

of TAP instances. For large scale TAPs, in which case

the commercial software fails to derive exact optimal

solutions, the performance of the HPSO is assessed by

competing with a genetic algorithm (GA). The

experimental result shows that the HPSO outperforms

the GA and the cost difference between the two

approaches is statistically significant. Also, the con-

vergence and the worst-case analyses of the HPSO

have been empirically conducted.

We are currently conducting our research for using

HPSO to solve another version of the TAP where each

processor and each communication link has a failure

ratio and the problem objective is to maximize the

reliability for accomplishing the task execution.
References

[1] H.S. Stone, Critical load factors in two-processor distributed

systems, IEEE Transactions on Software Engineering, SE-4

(1978) 254–258.

[2] V.M. Lo, Task assignment in distributed systems, PhD

dissertation, Dep. Comput. Sci., Univ. Illinois, Oct. 1983.

[3] A. Ernst, H. Hiang, M. Krishnamoorthy, Mathematical

programming approaches for solving task allocation problems,

Proc. of the 16th National Conf. Of Australian Society of

Operations Research, 2001.

[4] A. Billionnet, M.C. Costa, A. Sutter, An efficient algorithm

for a task allocation problem, Journal of ACM 39 (1992)

502–518.

[5] G.H. Chen, J.S. Yur, A branch-and-bound-with-underestimates

algorithm for the task assignment problem with precedence

constraint, Proc. of the 10th International Conf. on Distributed

Computing Systems, 1990, pp. 494–501.

[6] V.M. Lo, Heuristic algorithms for task assignment in

distributed systems, IEEE Transactions on Computers 37

(1988) 1384–1397.

[7] D.M. Nicol, D.R. O’Hallaron, Improved algorithm for TAP

pipelined and parallel computations, IEEE Transactions on

Computers 40 (1991) 295–306.

[8] D. Fernandez-Baca, A. Medepalli, Parametric task allocation

on partial k-trees, IEEE Transactions on Computers 42 (1993)

738–742.

[9] C.H. Lee, K.G. Shin, Optimal task assignment in homoge-

neous networks, IEEE Transactions on Parallel and Distributed

Systems 8 (1997) 119–129.
[10] M. Kafil, I. Ahmad, Optimal task assignment in heterogeneous

distributed computing systems, IEEE Concurrency 6 (1998)

42–50.

[11] E.S.H. Hou, N. Ansari, H. Ren, A genetic algorithm for

multiprocessor scheduling, IEEE Transactions on Parallel and

Distributed Systems 5 (1994) 113–120.

[12] A.B. Hadj-Alouane, J.C. Bean, K.G. Murty, A hybrid genetic/

optimization algorithm for a task allocation problem, Journal

of Scheduling 2 (1999) 189–201.

[13] A.K. Tripathi, B.K. Sarker, N. Kumar, A GA based multiple

task allocation considering load, International Journal of High

Speed Computing (2000) 203–214.

[14] F.T. Lin, C.C. Hsu, Task assignment scheduling by simulated

annealing, Proceeding of Conference on Computer and

Communication Systems, 1990, pp. 279–283.

[15] Y. Hamam, K.S. Hindi, Assignment of program tasks to

processors: a simulated annealing approach, European Journal

of Operational Research 122 (2000) 509–513.

[16] F. Glover, Tabu search: Part I, ORSA Journal on Computing 1

(1989) 190–206.

[17] M. Dorigo, L. Gambardella, Ant colony system: a cooperative

learning approach to the traveling salesman problem, IEEE

Transactions on Evolutionary Computation 1 (1997) 53–66.

[18] J. Kennedy, R.C. Eberhart, Particle swarm optimization,

Proceedings IEEE Int’l. Conf. on Neural Networks, vol. IV,

1995, pp. 1942–1948.

[19] R.C. Eberhart, Y. Shi, Evolving artificial neural networks,

Proceedings Int’l. Conf. on Neural Networks and Brain, 1998,

pp. PL5–PL13.

[20] V. Tandon, Closing the gap between CAD/CAM and

optimized CNC end milling, Master thesis, Purdue School

of Engineering and Technology, Indiana University Purdue

University Indianapolis, 2000.

[21] H. Yoshida, K. Kawata, Y. Fukuyama, Y. Nakanishi, A

particle swarm optimization for reactive power and voltage

control considering voltage stability, Proceedings Int’l. Conf.

on Intelligent System Application to Power Systems, 1999,

pp. 117–121.

[22] N. Shigenori, G. Takamu, Y. Toshiku, F. Yoshikazu, A hybrid

particle swarm optimization for distribution state estimation,

IEEE Transactions on Power Systems 18 (2003) 60–68.

[23] K.E. Parsopoulos, M.N. Vrahatis, Recent approaches to global

optimization problems through particle swarm optimization,

Natural Computing 1 (2002) 235–306.

[24] M. Clerc, J. Kennedy, The particle swarm explosion,

stability, and convergence in a multidimensional complex

space, IEEE Transactions on Evolutionary Computation 6

(2002) 58–73.

[25] I.C. Trelea, The particle swarm optimization algorithm:

convergence analysis and parameter selection, Information

Processing Letters 85 (2003) 317–325.

[26] Z. Michalewicz, D.B. Fogel, How to Solve It: Modern

Heuristics, Springer-Verlag, 2002.

P.-Y. Yin et al. / Computer Standards & Interfaces 28 (2006) 441–450450
Peng-Yeng Yin received his BS, MS and

PhD degrees in Computer Science from the

National Chiao Tung University, Hsinchu,

Taiwan. From 1993 to 1994, he was a

visiting scholar at the Department of

Electrical Engineering, University of Mary-

land, College Park, and the Department of

Radiology, Georgetown University, Wash-

ington DC. In 2000, he was a visiting

Professor in the Visualization and Intelli-

gent Systems Laboratory (VISLab) at the
Department of Electrical Engineering, University of California,

Riverside (UCR). From 2001 to 2003, he was a Professor at the

Department of Computer Science and Information Engineering,

Ming Chuan University, Taoyuan, Taiwan. Since 2003, he has been

a Professor of the Department of Information Management,

National Chi Nan University, Nantou, Taiwan, and is currently the

Chairman of the Department there. Dr. Yin received the Overseas

Research Fellowship from Ministry of Education in 1993, Overseas

Research Fellowship from National Science Council in 2000. He

has received the best paper award from the Image Processing and

Pattern Recognition Society of Taiwan. He is a member of the Phi

Tau Phi Scholastic Honor Society and listed in Who’s Who in the

World. His current research interests include pattern recognition,

content-based image retrieval, relevance feedback, machine learn-

ing, computational intelligence, and computational biology.
Shiuh-Sheng Yu received his BS and PhD

degrees in Computer Science and Informa-

tion Engineering from National Taiwan

University, and his MS degree in Computer

Science from State University of New York

at Stony Brook. From 1996 to 1999, he

was a Lecturer at the Department of

Information Management, National Chi

Nan University, Nantou, Taiwan. Since

1999, he has been an Associate Professor

of the same department. His current
research interests include health-care information systems, digital

museums, bioinformatics, and XML databases.
Pei-Pei Wang received her BS degree in

Information Management from Ming

Chuan University, Taoyuan, Taiwan, in

2003, and is currently pursuing the MBA

degree in Information Management at

National Chi Nan University, Nantou,

Taiwan. Her research interests include

computational intelligence, machine learn-

ing, and distributed systems.
Yi-Te Wang received her BSW degree in

Social Work from Fu Jen Catholic Univer-

sity, Taipei, Taiwan, in 2003, and is

currently pursuing an MBA degree in

Information Management at National Chi

Nan University, Nantou, Taiwan. Her

research interests include web program-

ming, content management, and system

security.

	A hybrid particle swarm optimization algorithm for optimal task assignment in distributed systems
	Introduction
	Problem formulation
	Hybrid particle swarm optimization
	Particle representation and initial swarm generation
	Fitness evaluation
	Particle vector modification
	Hybrid strategy
	The HPSO algorithm

	Experimental results
	Exact solutions
	Comparative performances
	Convergence analysis
	Worst-case analysis

	Conclusions
	References

