
Applied Mathematics and Computation 184 (2007) 407–420

www.elsevier.com/locate/amc
Multi-objective task allocation in distributed computing
systems by hybrid particle swarm optimization

Peng-Yeng Yin *, Shiuh-Sheng Yu, Pei-Pei Wang, Yi-Te Wang

Department of Information Management, National Chi Nan University, 303, University Road, Nantou 545, Taiwan
Abstract

In a distributed computing system (DCS), we need to allocate a number of modules to different processors for execu-
tion. It is desired to maximize the processor synergism in order to achieve various objectives, such as throughput maximi-
zation, reliability maximization, and cost minimization. There may also exist a set of system constraints related to memory
and communication link capacity. The considered problem has been shown to be NP-hard. Most existing approaches for
task allocation deal with a single objective only. This paper presents a multi-objective task allocation algorithm with pres-
ence of system constraints. The algorithm is based on the particle swarm optimization which is a new metaheuristic and has
delivered many successful applications. We further devise a hybrid strategy for expediting the convergence process. We
assess our algorithm by comparing to a genetic algorithm and a mathematical programming approach. The experimental
results manifest that the proposed algorithm performs the best under different problem scales, task interaction densities,
and network topologies.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Multi-objective task allocation problem; Distributed computing systems; Distributed system reliability; Hybrid strategy;
Particle swarm optimization; Genetic algorithm
1. Introduction

The configuration of a distributed computing system (DCS) involves a set of cooperating processors com-
municating over the communication links. To increase the system throughput, it is desired to allocate the mod-
ules of a distributed program to the processors according to some objectives, ranging from the minimization of
execution and communication cost [1–3], to the maximization of system reliability and safety [4,5], to the
increasing of fault tolerance using software and hardware redundancy [6,7]. Moreover, the system components
(processors and communication links) may be capacitated with limited amount of resource which constrains
the demand of the allocated modules. This paper deals with the task allocation problem in which multiple
objectives are considered and a set of resource constraints are imposed.
0096-3003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2006.06.071

* Corresponding author.
E-mail address: pyyin@ncnu.edu.tw (P.-Y. Yin).

mailto:pyyin@ncnu.edu.tw

408 P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420
Among others, system cost and reliability are two of the most concerned objectives to leverage the perfor-
mance of a DCS. The execution of a module will incur an execution cost from its allocated processor, and
some communication cost will be paid if two communicating modules are executed on different processors.
The task allocation which incurs the minimum system cost (the summation of execution and communication
costs) is considered to be the optimal. On the other hand, the distributed system reliability (DSR) is the prob-
ability for the successful completion of distributed programs which require that all the allocated processors
and involved communication links are operational during the mission. It is desired to increase the DSR when
the applications are reliability-critical such as the electricity power and military weapon systems. Most of the
existing approaches solve the problem by optimizing a single objective (cost minimization or reliability max-
imization), few of them have addressed the multi-objective issue [8].

Unfortunately, both of the minimization of system cost and the maximization of system reliability are NP-
hard problems [9,10]. As such, there exists a numerous number of literature for providing alternative solu-
tions. They can be broadly classified into three categories. (1) Mathematical programming approaches

[3,4,6,11–13] such as linear programming, branch-and-bound, and state-space algorithms, are developed to
solve small problems. (2) Customized algorithms [1,5,14,15] taking into account the specific system configura-
tions can provide exact or approximate solutions under some scenarios. (3) Metaheuristic algorithms such as
genetic algorithms (GA) [16–19] and simulated annealing (SA) [20,21], have also been applied to derive sub-
optimal solutions with reasonable time.

Since mathematical programming approaches are seeking the exact solutions, they are computationally
prohibitive if the problem size is large. Further, the customized algorithms rely on specific network configu-
rations and are constrained in limited applications. Recently, the development of metaheuristic optimization
theory has been flourishing, several new metaheuristic algorithms such as Tabu search (TS) [22], Ant Colony
Optimization (ACO) [23], and Particle Swarm Optimization (PSO) [24] have demonstrated successful applica-
tions in diverse fields. They are able to provide quality solutions with reasonable time.

Inspired by the success of metaheuristic algorithms, this paper presents a hybrid PSO (HPSO) algorithm to
solve the multi-objective task allocation problem (MOTAP) for system cost and reliability optimization. Effi-
cient particle coding scheme has been adopted and a hill-climbing heuristic is embedded in the PSO iteration to
expedite the convergence. The experimental results manifest that the HPSO reports quality solutions on a
large set of simulated instances involving different problem scales, task interaction densities, and network
topologies.

The remainder of this paper is organized as follows. Section 2 formulates the MOTAP for system cost and
reliability optimization. Section 3 describes the proposed HPSO algorithm. Section 4 reports the comparative
performances and convergence analysis. Finally, Section 5 concludes this work.

2. Problem formulation

2.1. Nomenclature

xik decision variable: xik = 1 if module i is allocated to processor k, and xik = 0 otherwise
n number of processors
r number of modules
pk processor k

lkb communication link connecting pk and pb

uk execution cost of processor pk per unit time
ukb communication cost of link lkb per unit time
kk failure rate of processor pk

lkb failure rate of communication link lkb

eik incurred accumulative execution time (AET) if module i is executed on processor k

cij incurred intermodule communication (IMC) load (in some unit of data quantity) between modules i

and j

wkb transmission rate of communication link lkb

mi memory resource requirements of module i from its execution processor

P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420 409
Mk amount of memory resource capacitated with processor pk

si computation resource requirements of module i from its execution processor
Sk amount of computation resource capacitated with processor pk

2.2. Problem statement

We consider the task allocation problem with the following scenarios:

• The processors involved in the DCS are heterogeneous. Hence, the processors may be capacitated with var-
ious units of memory and computation resources and they may have different processing speeds and failure
rates. Also, the communication links may have different bandwidths and failure rates.

• A module may take different execution time if it is executed on different processors. An amount of data may
take different communication time if transmitted through different communication links. The system cost
and reliability are both dependent upon the execution and communication times.

• The execution of a module will also consume a specific amount of memory and computation resource from
its assigned processor.

• The state of processors and communication links is either operational or failed. Failure events are statisti-
cally independent.

Our goal is to search a task allocation that minimizes the system cost and maximizes the system reliability
simultaneously while satisfying all of the resource constraints. We render the network topology by the proces-

sor interaction graph (PIG). The PIG, denoted by G1(P,L) where P = {pi}i=1,2,. . .,n and L = {lkb}16k<b6n are the
sets of processors and communication links respectively, illustrates how the processors are connected in the
DCS. Fig. 1 gives some typical examples of PIG, including linear, ladder, cross, tree, and star, where the nodes
indicate the processors and the edges correspond to the communication links.

The intermodule communication (IMC) among the distributed modules of a task to be executed in a DCS
can be described by the task interaction graph (TIG). We denote the TIG by G2(V,E) where V = {vi}i=1,2,. . .,r is
a set of r nodes indicating the r modules and E = {cij} is a set of edges specifying the IMC among these mod-
ules. Fig. 2 gives an example of a TIG where the IMC among five modules are specified.

The complexity of the TIG can be measured by the task interaction density d as follows:
d ¼ jEj
rðr � 1Þ=2

; ð1Þ
cross

p1

p2

p4

p5

p3

p6

p7

l12

l23

l34

l45

l56

l67

p1

p2

p4

p5

p3

p6

p7

l12

l13

l14

l15l16

l17

p1

p2

p4

p5

p3 p6

p7

l12

l23

l25

l45

l56

l57

p1

p2

p4

p5

p3p6 p7

l12

l23

l34

l45

l36 l37

p1

p2

p4 p5

p3

p6 p7

l12 l13

l24 l25 l36 l37

tree starladderlinear

Fig. 1. Typical examples of PIG.

v1

v5v4

v3

v2

13c

35c

15c

24c

14c

Fig. 2. An example of TIG.

410 P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420
where jEj calculates the number of channels of requested IMC demands in the TIG, and r(r � 1)/2 indicates
the maximal number of possible IMC channels among r modules. Therefore, the task interaction density
quantifies the ratio of the IMC for a TIG and can serve as one of the key factors that affect the problem
complexity.

2.2.1. System cost

We assume that the execution and communication costs are time-dependent which fits the scenario that
longer execution or communication times will incur heavier cost on the involved processors or communication
links. Given a task allocation X = {xik}16i6r,16k6n, the execution cost of processor pk during the accumulative
execution time (AET) interval t is ukt. Since the total elapse time for executing the modules assigned to pk isPr

i¼1xikeik, the execution cost of all processors can be computed by
Pn

k¼1

Pr
i¼1ukxikeik.

Similarly, since the total elapse time for handling the IMC via lkb is
Pr

i¼1

P
i 6¼jxikxjbðcij=wkbÞ, the communi-

cation cost incurred over the communication link lkb is
Pr

i¼1

P
i6¼jukbxikxjbðcij=wkbÞ, and the total system com-

munication cost is thus given by
Pn�1

k¼1

P
b>k

Pr
i¼1

P
i6¼jukbxikxjbðcij=wkbÞ.

The system cost which is defined as the sum of the execution and communication costs is computed as
follows:
CðXÞ ¼
Xn

k¼1

Xr

i¼1

ukxikeik þ
Xn�1

k¼1

X
b>k

Xr

i¼1

X
i6¼j

ukbxikxjbðcij=wkbÞ: ð2Þ
2.2.2. System reliability

To evaluate the distributed system reliability (DSR) for the successful completion of a mission with a task
allocation, we follow Shatz’s formulation [11] to compute the probability that all involved components (pro-
cessors and communication links) are operational during the mission. Analogous to the system cost, the sys-
tem reliability is also time-dependent. Let the task allocation be X = {xik}16i6r,16k6n, the reliability of
processor pk during the AET for executing the modules assigned to it follows the Poisson distribution

e�kk

Pr

i¼1
xik eik . Similarly, the reliability for the communication link lkb during the total IMC transmission time

is e
�lkb

Pr

i¼1

P
i 6¼j

xik xjbðcij=wkbÞ. As such, the system reliability that all involved processors and communication links
are operational during the elapse time is computed as follows:
RðXÞ ¼
Yn

k¼1

e
�kk

Pr

i¼1

xik eik Yn�1

k¼1

Y
b>k

e
�lkb

Pr

i¼1

P
i6¼j

xik xjbðcij=wkbÞ
: ð3Þ
2.2.3. Multi-objective formulation

Both the system cost and the system reliability described above (see Eqs. (2) and (3)) have quadratic
objective functions, we propose a weighting summation to optimize the two criteria simultaneously,
while satisfying all the system resource constraints. The mathematical formulation of the MOTAP is as
follows:

P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420 411
Min ZðXÞ ¼ CðXÞ þ a=RðXÞ; ð4Þ

subject to
Xn

k¼1

xik ¼ 1 8 i ¼ 1; 2; . . . ; r; ð5Þ

Xr

i¼1

mixik 6 Mk 8 k ¼ 1; 2; . . . ; n; ð6Þ

Xr

i¼1

sixik 6 Sk 8 k ¼ 1; 2; . . . ; n; ð7Þ

xik 2 f0; 1g 8 i; k: ð8Þ
The objective function (4) combines the two optimization objectives (cost minimization and reliability maxi-
mization) into a single function by a scaling factor a. The scaling factor plays two roles: First, it normalizes the
values of C(X) and R(X) to comparative ranges such that Z(X) will not be dominated by a single objective.
Second, a can be used as a weighting parameter which controls the relative significance of each objective. Con-
straint (5) enforces that each module should be assigned to exactly one processor. Constraints (6) and (7) cor-
respond to the resource constraints where the memory and computation resource capacity of each processor
should be no less than the total amount of resource requirements of all of its assigned modules. Constraint (8)
guarantees that xik are binary variables.

3. Proposed algorithm

The problem formulation of MOTAP is a 0–1 programming with a quadratic objective function which has
been known to be NP-hard. Seeking the optimal solution to the problem is computationally prohibitive due to
the enormous computations. An alternative is to find approximate solutions efficiently based on metaheuris-
tics. In the following, we propose a hybrid metaheuristic algorithm for tackling the problem.

3.1. Review of particle swarm optimization

In 1995, Kennedy and Eberhart [24] have proposed the particle swarm optimization (PSO) algorithm which
is closely related to the field of evolutionary computation. The PSO is inspired by the behavior of bird flocking
and fish schooling. A swarm consisting of a population of birds/fishes flocks synchronously, changes direction
suddenly, scatters and regroups iteratively, and finally perches on a target, in order to escape from enemies or
search for food. The PSO mimics the interesting behavior and serves as a function optimizer. It keeps a pop-
ulation of individuals which are potential solutions to the optimization problem. By taking advantage of indi-
vidual cognition and social interaction, the swarm improves the solutions iteratively and eventually converges
to the optimal solution. The convergence and parameterization aspects of the PSO have been discussed thor-
oughly [25,26]. The attractiveness of the PSO includes the features: natural metaphor, stochastic move, adap-
tivity, and positive feedback.

The basic PSO algorithm (see Fig. 3) is outlined as follows. Initially, a swarm of particles is generated at
random. Each particle is a candidate solution to the optimization problem. Let the problem solution be
described by r variables, we denote the ith particle by Pi = (pi1,pi2, . . . ,pir)

T 2 Rr, and it changes position
1. Create an initial swarm at random.

2. Repeat

2.1 Update the personal and global best experiences.

2.2 Update particles’ positions based on best experiences.

Until the stopping criterion is satisfied.

Fig. 3. Summary of the basic PSO algorithm.

412 P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420
iteratively according to two types of experiences: personal best and global best experiences. This is evidenced
from the socio-psychological view that the personal cognition and social interaction play important roles in
learning. This is a positive feedback process which increases the success rate in foraging for the social system,
or in the optimization language, it increases the probability for targeting the optimal solution. Analogous to
other evolutionary computation algorithms, the PSO algorithm is terminated when the stopping criterion is
satisfied which can be set as a maximal number of experienced iterations or a maximal number of iterations
between two consecutive improvements on the global experience.

3.2. Hybrid PSO for the multi-objective task allocation problem

To cope with the multi-objective task allocation problem (MOTAP), we propose the PSO features relevant
to particle representation, fitness function, particle movement, and hybrid strategy. The details are presented
in the following.
3.2.1. Particle representation

To solve an optimization problem with the PSO, one needs to encode the candidate solution to the under-
lying problem into a particle vector form for conducting the evolutionary computation, then the evolved vec-
tor is decoded to the solution form to evaluate its merit of fitness. The representation of the particle vector
should be compact (for efficient storage use) and simple (for fast encoding/decoding process). For the consid-
ered MOTAP, one may let a particle correspond to all decision variables, X = {xik}16i6r,16k6n, however, this
representation is not efficient since X is a sparse matrix. Instead, we represent the ith particle as Pi = (pi1, -
pi2, . . . ,pir)

T where pi,j indicates the index of the allocated processor for the jth module. The proposed particle
representation is both compact (only r cells are needed) and simple (pi,j = k implies that xjk = 1 and xjl = 0 for
" l 5 k).

The PSO swarm consists of N particles and the initial swarm is generated at random. The swarm particles
iteratively improve their solution quality (evaluated by the fitness function) based on personal cognition and
social interaction by the particle movement formula.
3.2.2. Fitness function

The fitness function fitness (X) measures to what extent the particle solution X satisfies the objective of the
constrained optimization problem. Two criteria should be concerned. First, the solution resulting in a better
objective value from the objective function is considered to satisfy more the objective of the problem than the
solution with a worse objective value. Second, the solutions are divided into several categories according to the
feasibility with which they meet the problem constraints. Solutions which satisfy all of the constraints are
grouped in a category that deserves the highest merit. While the solutions which violate at least one of the
constraints are further classified in accordance with the quantified amount they mismatch the constraints.
The solutions with lower mismatch amount are preferential than the solutions with higher mismatch amount.

With the above considerations, we define the fitness function as follows:
fitnessðXÞ ¼ ZðXÞ�1 þ JðXÞ�1
; ð9Þ
where Z(X) is the minimization objective function of the MOTAP (see Eq. (4)) and J(X) is the quantified
amount of mismatch if X is infeasible; otherwise, J(X) is set as 0. Therefore, the higher the fitness value of
X, the more satisfactory the solution X.

Since the constraints (5) and (8) are always satisfied if our particle representation is adopted, J(X) is only
related to the constraints (6) and (7) and it can be defined as follows:
JðXÞ ¼ d1 �
Xn

k¼1

max 0;
Xr

i¼1

mixik �Mk

 !
þ d2 �

Xn

k¼1

max 0;
Xr

i¼1

sixik � Sk

 !
; ð10Þ
where d1 and d2 are the weights controlling the relative significance of respective constraints.

P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420 413
3.2.3. Particle movement

According to the socio-psychological theory the learning is fulfilled through personal cognition and social
interaction. The PSO enforces the socio-learning process by tallying the best experiences observed by individ-
ual particle and the entire swarm during the evolution. The personal best experience, denoted by pbesti, is the
experienced position by particle Pi which receives the highest fitness value during flying. The swarm’s best
experience has been defined in two versions. In the local best version, each particle remembers the best posi-
tion lbesti among the competing particles within its local topological neighborhood. For the global best ver-
sion, the best position gbest is determined by any particles in the entire swarm. It has been empirically shown
that the local best version outperforms the global best version in a number of applications.

The convergence issue of the PSO has been studied thoroughly. Several alternative solutions have been pro-
posed ranging from the maximum velocity limit [24], to the inertia weight [27], to the constriction factor model
[28]. Among them, the constriction factor model recently proposed by Clerc [28] has received the attention
from many PSO practitioners. It proceeds as follows. At each evolutionary iteration, the particle Pi modifies
its velocity vij and position pij through each dimension j by referring to the personal best experience (pbesti) and
the swarm’s best experience (lbesti, if the local best version is used) using Eqs. (11)–(13) as follows:
vij K½vij þ c1rand1ðpbesti � pijÞ þ c2rand2ðlbesti � pijÞ�; ð11Þ
pij pij þ vij; ð12Þ
where c1 and c2 are the cognitive and interaction coefficients, rand1 and rand2 are random real numbers drawn
from U(0,1), and K is the constriction coefficient satisfying
K ¼ 2

2� ðc1 þ c2Þ �
ffi
ðc1 þ c2Þ2 � 4ðc1 þ c2Þ

q����
����

s:t: c1 þ c2 > 4: ð13Þ
In many applications, setting c1 = c2 = 2.05 has received satisfactory results.
At each iteration, the PSO flies each particle through the solution space using Eqs. (11)–(13) such that the

particles learn through the personal cognition (pbesti) and the social interaction (lbesti) while still exploring
new areas by the random multipliers (rand1 and rand2) to escape from the barrier of the local optimality. When
the algorithm is terminated with a given maximum number of iterations, the best experienced position by the
entire swarm is reported as the final solution.

3.2.4. Hybrid strategy

Many empirical findings have manifested that the hybrid strategy interweaving the PSO with other kinds of
searching methods outperforms a simple plan using the PSO alone. For example, Wang and Li [29] used each
particle as a seed to conduct a simulated annealing searching process and verified the strength of the hybrid
algorithm on a testbed of optimization functions. Meng et al. [30] embedded the chaotic search within the PSO
to avoid the stagnation and increase the convergence speed. Another hybrid strategy proposed by Liu et al.
[31] employed the line search to determine the maximum step size of the particle movement rationally. In light
of this, we devise a parameter-wise hill-climbing search heuristic and embed it into the PSO algorithm.

At the end of each PSO iteration, we improve the solution quality of each particle by scanning along its r

cells sequentially for possible updating. We examine each cell and look for possible replacement with other
values if a higher fitness is obtained, such that the particle is improved from both views of objective function
and constriction satisfaction. When a cell is examined, the values of the remaining r � 1 cells remain
unchanged. To save the computational time, the scan-along process is conducted only once for each particle.

4. Experimental results and discussion

We have implemented the proposed hybrid PSO algorithm (referred to as HPSO hereafter), a genetic algo-
rithm (GA), and a Lingo program (Exact) to analyze their comparative performances. The experimental envi-
ronment is a 2.4 GHz PC with 256MB RAM. The settings of the competing algorithms are detailed in the
following:

414 P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420
• HPSO: The particle representation, fitness function, particle movement, and the hybrid scheme employed
by the algorithm have been described in Section 3.2. The scaling factor a (see Eq. (4)) is determined by the
minimum of C(X) from 10 random solutions. Further, we let d1 = d2 = 1 in Eq. (10) for setting equal impor-
tance on each constraint. The swarm size is optimally tuned as 80 particles according to preliminary
experiments.

• GA: To make a fair comparison, the algorithm uses the same representation scheme as the HPSO does, i.e.,
the chromosome is represented as Pi = (pi1,pi2, . . . ,pir)

T where pi,j = k implies that xjk = 1 and xjl = 0 for "
l 5 k. The fitness function given in Eq. (9) is also used for evaluating the merit of fitness of each chromo-
some. The algorithm ducks a population of 80 chromosomes and evolves with the roulette-wheel selection,
single-point crossover, and uniform mutation operations. The crossover and mutation rates are optimally
tuned as 0.7 and 0.1, respectively.

• Exact: The Lingo program solves the 0–1 quadratic programming problem (Eqs. (4)–(8)) and reports the
exact optimal solution. However, when the Lingo program fails to solve the problem within 24 h, it is ter-
minated with an infeasible solution or an unknown status and we discard such cases for further
comparison.

To fairly compare the algorithms, the HPSO and GA are terminated when they have experienced a max-
imum number of fitness evaluations (here, we set this number to 80,000) since the evaluation of fitness function
is the most time-consuming component for the HPSO and GA, and the number of fitness evaluations indicates
the amount of the computation resource used by the algorithms. Further, both HPSO and GA are stochastic-
based algorithms and each independent run of the same algorithm on a particular problem instance may yield
a different result, we thus run each algorithm 10 times and report the average results.
Table 1
The objective values and computational times obtained using different algorithms tested on the linear network topology

Linear HPSO GA Exact

n r d Z(X) CPU time Z(X) CPU time Z(X) CPU time

6 8 0.3 535.282 6.600 535.282 13.800 535.282 121
0.5 844.520 6.800 844.613 14.200 835.819 110
0.8 855.011 7.000 856.556 14.200 847.368 113

12 0.3 1437.252 11.000 1616.327 18.200 NA NA
0.5 1654.923 11.400 1898.597 19.200 NA NA
0.8 2712.131 11.800 2785.471 20.400 NA NA

7 9 0.3 176.638 8.000 176.638 14.400 176.638 3627
0.5 461.402 8.400 466.185 15.200 438.202 3625
0.8 812.952 8.600 812.952 15.400 812.952 3612

13 0.3 1190.142 17.800 1204.166 20.400 NA NA
0.5 2127.170 12.800 2151.343 20.800 NA NA
0.8 3451.466 13.600 3524.238 22.000 NA NA

8 10 0.3 640.656 9.000 673.318 17.600 NA NA
0.5 631.792 9.400 750.047 17.000 NA NA
0.8 1229.001 9.800 1282.784 17.400 NA NA

16 0.3 2009.679 17.200 2293.542 22.800 NA NA
0.5 3353.591 17.000 3709.509 25.000 NA NA
0.8 7760.850 18.600 8214.603 26.400 NA NA

9 11 0.3 1033.969 10.800 1036.263 17.400 NA NA
0.5 1295.372 11.000 1302.985 17.800 NA NA
0.8 2391.183 11.600 2443.743 18.600 NA NA

17 0.3 2444.573 17.400 2602.165 25.800 NA NA
0.5 4379.877 18.000 4453.623 27.200 NA NA
0.8 7013.613 19.400 7253.068 29.000 NA NA

Average 2101.794 12.208 2203.667 19.592

NA: not available.

P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420 415
4.1. Dataset description

To assess the comparative performances of the competing algorithms, a large simulated MOTAP dataset is
generated. Five typical types of PIG as shown in Fig. 1, namely linear, ladder, cross, tree, and star are con-
sidered. For each PIG, we set the numbers of processors (n) and modules (r) equal to (6, 8), (6, 12), (7, 9),
(7,13), (8, 10), (8, 16), (9, 11), and (9,17), respectively, in order to testify the algorithms with different problem
scales. Also, for each setting of (n, r), we consider three different TIGs with various task interaction density d

equivalent to 0.3, 0.5, and 0.8. Therefore, there are totally 5 · 8 · 3 = 120 problem instances in our dataset
which covers a broad range of real-world DCS applications with different network topology, problem scale,
and task interaction density.

The values of the other system parameters are generated at random with the uniform distributions of the
following ranges: the module accumulative execution time (AET) is between 15 and 25, the intermodule com-
munication (IMC) load is between 15 and 25, the failure rate of processors and communication links is yielded
in the ranges (0.00005, 0.00010) and (0.00015, 0.00030), the memory and computation capacity of each pro-
cessor varies from 100 to 200, and the memory and computation requirement of each module ranges from 1 to
60.

4.2. Comparative performances

We apply each algorithm to solve all of the 120 problem instances in our dataset and list their comparative
results in Tables 1–5. The obtained MOTAP objective values Z(X) from each competing algorithm and the
needed CPU times (in seconds) are reported. We have the following observations.
Table 2
The objective values and computational times obtained using different algorithms tested on the ladder network topology

Ladder HPSO GA Exact

n r d Z(X) CPU time Z(X) CPU time Z(X) CPU time

6 8 0.3 542.684 6.200 542.684 11.800 542.684 119
0.5 838.685 6.000 841.279 12.000 837.607 107
0.8 869.650 6.600 882.522 12.000 863.513 116

12 0.3 1128.308 10.000 1221.942 15.600 NA NA
0.5 2055.484 10.200 2070.345 16.600 NA NA
0.8 2505.686 10.600 2686.133 16.600 NA NA

7 9 0.3 562.014 6.600 580.880 12.600 542.154 3129
0.5 443.425 6.800 561.197 12.600 442.815 3512
0.8 1012.775 7.000 1179.836 12.800 1011.704 3647

13 0.3 745.058 11.200 746.513 18.600 NA NA
0.5 1546.016 11.800 1803.112 18.800 NA NA
0.8 3302.137 12.400 3773.913 20.400 NA NA

8 10 0.3 548.692 7.600 611.945 15.800 NA NA
0.5 991.385 8.000 1099.826 16.600 NA NA
0.8 2351.041 8.400 2367.652 16.400 NA NA

16 0.3 1832.447 21.200 2042.980 22.200 NA NA
0.5 3158.701 22.200 3297.412 23.800 NA NA
0.8 6731.436 23.600 6852.184 25.000 NA NA

9 11 0.3 465.900 11.000 512.726 16.000 NA NA
0.5 1554.876 11.400 1657.546 16.400 NA NA
0.8 2512.232 11.600 2608.806 18.400 NA NA

17 0.3 3023.153 15.400 3308.757 25.200 NA NA
0.5 4562.435 16.200 5067.531 25.800 NA NA
0.8 9271.078 17.600 9467.498 28.000 NA NA

Average 2189.804 11.650 2324.384 17.917

Table 3
The objective values and computational times obtained using different algorithms tested on the cross-network topology

Cross HPSO GA Exact

n r d Z(X) CPU time Z(X) CPU time Z(X) CPU time

6 8 0.3 544.654 6.000 549.915 12.400 539.658 116
0.5 836.685 6.400 838.148 12.800 834.601 111
0.8 875.365 6.200 879.749 13.000 871.513 121

12 0.3 1108.366 10.000 1225.599 16.000 NA NA
0.5 2018.958 10.400 2020.270 17.000 NA NA
0.8 2455.991 10.400 2573.036 17.800 NA NA

7 9 0.3 552.112 7.400 562.007 13.800 527.110 3454
0.5 413.873 7.400 471.464 13.800 413.873 3763
0.8 874.867 7.600 1050.565 13.800 874.867 3377

13 0.3 759.089 10.800 822.866 17.600 NA NA
0.5 1514.997 11.000 1707.580 18.800 NA NA
0.8 3046.973 11.800 3254.543 20.400 NA NA

8 10 0.3 537.947 8.600 570.072 15.200 NA NA
0.5 920.917 10.000 950.204 15.000 NA NA
0.8 2089.825 10.400 2342.643 15.600 NA NA

16 0.3 1678.774 18.200 1933.921 23.400 NA NA
0.5 3052.037 15.400 3128.797 24.200 NA NA
0.8 6260.065 16.600 6951.114 25.400 NA NA

9 11 0.3 1190.203 9.800 1229.421 17.200 NA NA
0.5 1000.945 9.600 1111.596 17.000 NA NA
0.8 1990.747 10.200 2119.287 17.800 NA NA

17 0.3 2293.922 15.000 3052.894 24.800 NA NA
0.5 6308.418 17.000 6560.250 26.800 NA NA
0.8 6450.499 17.600 6545.803 27.400 NA NA

Average 2032.343 10.992 2185.489 18.208

416 P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420
First, although the Exact algorithm can find the global optimal solution for the MOTAP, it is limited to the
use of small problems. In particular, in our simulations, the Exact algorithm successfully solves the problem
instances with (n, r) = (6,8) and (7,9) for all tested network topologies and task interaction density d; however,
it fails to deliver solutions for problems of larger size due to the exponentially increasing computational time.
Secondly, among the 30 problem instances which have been solved by the Exact algorithm, the HPSO algo-
rithm can also obtain the global optimal solution for 11 of them while the GA can only report exact solution
for five problems. For those problems which the Exact algorithm cannot deal with, the HPSO algorithm
always produces better objective values than GA. Thirdly, as for the computational times consumed by the
comparative algorithms, the Exact method spends nearly two minutes for solving the problems in the
(n = 6, r = 8) category, and about 2 h for tackling the problems with (n = 7, r = 9), the other problems are
too hard for the Exact algorithm to solve within 24 h. On the other hand, the HPSO and the GA algorithms
can derive exact or sub-optimal solutions for all of the test problem instances, manifesting the need for using
metaheuristic algorithms in solving complex MOTAP problems. The HPSO algorithm is more computation-
ally efficient than the GA algorithm in our simulations, although the latter can also obtain exact or approx-
imate solutions for all test problems within 30 s.

4.3. Information gain

The HPSO is a metaheuristic algorithm which is a master strategy guiding other heuristics to search in a
strategic way instead of simply moving to local optima. The aim of this strategy is to look beyond neighbor-
hood such that the searching will not get stuck by the barrier of local optimality. This feature also makes
HPSO being able to manage the particles to interact with each other through an indirect media using swarm’s
local or global experiences. The individual particles learn more about the solution space and receive informa-

Table 4
The objective values and computational times obtained using different algorithms tested on the tree network topology

Tree HPSO GA Exact

n r d Z(X) CPU time Z(X) CPU time Z(X) CPU time

6 8 0.3 545.654 6.400 557.245 13.400 545.654 121
0.5 838.223 6.600 839.090 13.600 833.609 105
0.8 866.613 6.600 866.613 13.800 866.613 114

12 0.3 1112.210 10.400 1202.863 17.600 NA NA
0.5 2055.032 10.600 2080.255 18.400 NA NA
0.8 2508.617 11.000 2713.774 19.800 NA NA

7 9 0.3 582.695 8.000 592.047 14.400 547.157 2978
0.5 441.818 10.000 443.425 14.600 441.818 3508
0.8 1054.109 8.800 1064.124 15.000 1001.703 3255

13 0.3 802.547 11.800 840.213 19.200 NA NA
0.5 1709.632 11.800 1831.987 19.800 NA NA
0.8 3447.616 12.800 3668.092 21.200 NA NA

8 10 0.3 509.089 8.600 542.089 15.800 NA NA
0.5 996.833 9.000 1006.679 16.600 NA NA
0.8 2348.909 10.000 2390.924 17.400 NA NA

16 0.3 1850.211 17.400 2037.972 23.800 NA NA
0.5 3082.347 18.200 3253.075 25.000 NA NA
0.8 6501.722 19.200 6720.778 26.400 NA NA

9 11 0.3 492.454 11.200 514.290 18.000 NA NA
0.5 1454.682 11.200 1646.251 18.400 NA NA
0.8 2550.584 12.000 2752.928 19.200 NA NA

17 0.3 3149.375 17.800 3298.810 26.800 NA NA
0.5 4526.521 18.200 4966.499 27.400 NA NA
0.8 9499.565 19.400 9656.569 28.800 NA NA

Average 2205.294 11.958 2311.941 19.350

P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420 417
tion gain as the evolution proceeds. Since the particles learn by interactions, all the pbest can continuingly
improve during evolution and will resort to near-optimal solutions. We thus can define the information gain
as how pure the collection of pbest is, and we would like to use a measure to quantify the information gain
obtained from the social interactions conducted by the HPSO.

Here, we employ a statistic measure widely used in information theory, named entropy, for measuring the
purity of the set of all pbest as the evolution proceeds. Let Pj(s) be the probability that a pbest allocates the jth
module to the sth processor, viz.
P jðsÞ ¼ Prfpbestij ¼ sji ¼ 1; 2; . . . ;Ng 8s ¼ 1; 2; . . . ; n: ð14Þ
The entropy over the probability density function Pj(s), s = 1,2, . . . ,n, is given by
Ej ¼ �
Xn

s¼1

P jðsÞlog2P jðsÞ: ð15Þ
Ej describes the purity over the collection of all pbest for the decision about the allocation of the jth module.
To provide an overall measure, we compute the expected entropy as �E ¼

Pr
j¼1Ej=r. The smaller the value of �E

is, the higher the purity of the set of all pbest, and the higher the information gain.
Fig. 4 corresponds to the curve showing the variations of the expected entropy (�EÞ as the number of fitness

evaluations increases. The expected entropy decreases rapidly from 2.23 during the stage before 20,000 fitness
evaluations because the particles widely explore the solution space and gain rich information through inter-
actions, resulting in a fast decreasing rate on �E. After the 20,000th fitness evaluation, the decreasing rate
becomes gentle, and the value of �E finally decreases to 1.05. This phenomenon reflects the fact that the par-
ticles are more similar to each other at this stage, only few cells of the particles can be further tuned through
interactions, and the information gain has been maximized.

Table 5
The objective values and computational times obtained using different algorithms tested on the star network topology

Star HPSO GA Exact

n r d Z(X) CPU time Z(X) CPU time Z(X) CPU time

6 8 0.3 540.654 6.400 547.495 14.200 540.654 130
0.5 842.495 6.600 843.586 14.600 839.006 106
0.8 894.584 6.800 896.374 14.400 861.512 115

12 0.3 1414.331 10.000 1493.162 19.000 NA NA
0.5 1850.526 10.000 1926.071 19.400 NA NA
0.8 3108.935 10.400 3241.080 20.600 NA NA

7 9 0.3 392.946 7.400 401.897 15.400 392.946 3711
0.5 582.825 7.400 649.157 15.800 575.422 3654
0.8 1249.849 8.800 1251.402 15.400 1085.624 3085

13 0.3 1588.639 12.600 1644.372 21.200 NA NA
0.5 1847.337 12.600 1890.389 21.200 NA NA
0.8 2920.360 14.200 2931.999 22.000 NA NA

8 10 0.3 700.897 10.000 753.302 16.800 NA NA
0.5 1054.911 10.000 1275.549 17.800 NA NA
0.8 1235.156 10.400 1307.135 17.800 NA NA

16 0.3 2399.263 19.200 2490.227 27.400 NA NA
0.5 4400.804 22.800 4452.371 27.200 NA NA
0.8 6787.760 19.400 6923.338 27.200 NA NA

9 11 0.3 1419.397 11.400 1437.542 18.600 NA NA
0.5 981.723 11.800 1272.548 19.000 NA NA
0.8 2529.373 12.200 2568.038 19.400 NA NA

17 0.3 2852.755 18.000 2912.041 27.600 NA NA
0.5 5060.010 18.400 5346.050 29.200 NA NA
0.8 7718.745 19.400 7784.645 30.200 NA NA

Average 2265.595 12.342 2343.324 20.475

Fig. 4. The expected entropy (�E) over the collection of all the pbest versus the number of fitness evaluations.

418 P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420
4.4. Worst-case analysis

To ensure the Quality of Service (QoS) of an application running in a DCS, it is crucial to analyze the worst
optimal system reliability and cost we could get after a specific number of repetitive runs of our algorithm.
Since the proposed HPSO is a stochastic algorithm and each separate run of the program could yield a dif-
ferent result, we need to analyze it’s worst case after repetitive testing. As we have formulated the multiple
objectives of the MOTAP as a weighted summation (Z(X)), we run the HPSO 1000 times on a problem
instance and plot the variations of the worst optimal Z(X) we could get after different numbers of repetitive
runs. The worst-case analysis shown in Fig. 5 may be important when the application needs to guarantee the

Fig. 5. The worst optimal Z(X) versus the number of repetitive runs of HPSO.

P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420 419
quality of the solution. For example, the HPSO can derive a task allocation with Z(X) value lower than 2400
after 120 repetitive runs in the worst case. But in the general case the HPSO is likely to derive such a quality-
guaranteed solution in a single run with a very high probability equivalent to 1 � 120/1000 = 88%.

5. Conclusions

In this paper, we have proposed a hybrid particle swarm optimization (HPSO) algorithm which intends to
minimize the cost and maximize the reliability simultaneously for executing programs in a distributed comput-
ing system. The HPSO initializes a swarm of particles each of which corresponds to a candidate solution to the
underlying problem. These particles iteratively improve their quality through collective experiences of
personal cognition and social interactions. This is a positive feedback process such that the intelligence of
the entire swarm is enriched. Penalty functions tailored to the system constraints are devised in order to deal
with infeasible solutions. The HPSO embeds a local search heuristic into the evolutionary iterations for
expediting the convergence. The performance of the proposed method is compared to a genetic algorithm
and an exact algorithm. The experimental results manifest that the HPSO reports quality solutions on a large
set of simulated instances involving different problem scales, task interaction densities, and network topolo-
gies. The information gain and the worst-case analyses of the HPSO have been theoretically and empirically
conducted.

References

[1] C.H. Lee, K.G. Shin, Optimal task assignment in homogeneous networks, IEEE Transactions on Parallel and Distributed Systems 8
(1997) 119–129.

[2] A.T. P, C.S.R. Murthy, Optimal task allocation in distributed systems by graph matching and state space search, The Journal of
Systems and Software 46 (1999) 59–75.

[3] A. Ernst, H. Hiang, M. Krishnamoorthy, Mathematical programming approaches for solving task allocation problems, in:
Proceedings of the 16th National Conference of Australian Society of Operations Research, 2001.

[4] S. Kartik, S.R. Murthy, Task allocation algorithms for maximizing reliability of distributed computing systems, IEEE Transactions
on Computers 46 (1997) 719–724.

[5] S. Srinivasan, N.K. Jha, Safety and reliability driven task allocation in distributed systems, IEEE Transactions on Parallel and
Distributed Systems 10 (1999) 238–251.

[6] S. Kartik, S.R. Murthy, Improved task-allocation algorithms to maximize reliability of redundant distributed computing systems,
IEEE Transactions on Reliability 44 (1995) 575–586.

[7] C.C. Hsieh, Optimal task allocation and hardware redundancy policies in distributed computing systems, European Journal of
Operational Research 147 (2003) 430–447.

[8] C.C. Hsieh, Y.C. Hsieh, Reliability and cost optimization in distributed computing systems, Computers and Operations Research 30
(2003) 1103–1109.

[9] V.M. Lo, Task assignment in distributed systems, Ph.D. dissertation, Department of Computer Science, University of Illinois,
October, 1983.

[10] M.S. Lin, D.J. Chen, The computational complexity of the reliability problem on distributed systems, Information Processing Letters
64 (1997) 143–147.

420 P.-Y. Yin et al. / Applied Mathematics and Computation 184 (2007) 407–420
[11] S.M. Shatz, J.P. Wang, M. Goto, Task allocation for maximizing reliability of distributed computer systems, IEEE Transactions on
Computers 41 (1992) 1156–1168.

[12] A. Billionnet, M.C. Costa, A. Sutter, An efficient algorithm for a task allocation problem, Journal of ACM 39 (1992) 502–518.
[13] G.H. Chen, J.S. Yur, A branch-and-bound-with-underestimates algorithm for the task assignment problem with precedence

constraint, in: Proceedings of the 10th International Conference on Distributed Computing Systems, 1990, 494–501.
[14] D.M. Nicol, D.R. O’Hallaron, Improved algorithm for TAP pipelined and parallel computations, IEEE Transactions on Computers

40 (1991) 295–306.
[15] D. Fernandez-Baca, A. Medepalli, Parametric task allocation on partial k-trees, IEEE Transactions on Computers 42 (1993) 738–742.
[16] E.S.H. Hou, N. Ansari, H. Ren, A genetic algorithm for multiprocessor scheduling, IEEE Transactions on Parallel and Distributed

Systems 5 (1994) 113–120.
[17] A.B. Hadj-Alouane, J.C. Bean, K.G. Murty, A hybrid genetic/optimization algorithm for a task allocation problem, Journal of

Scheduling 2 (1999) 189–201.
[18] A.K. Tripathi, B.K. Sarker, N. Kumar, A GA based multiple task allocation considering load, International Journal of High Speed

Computing (2000) 203–214.
[19] D.P. Vidyarthi, A.K. Tripathi, Maximizing reliability of distributed computing system with task allocation using simple genetic

algorithm, Journal of Systems Architecture 47 (2001) 549–554.
[20] F.T. Lin, C.C. Hsu, Task assignment scheduling by simulated annealing, in: Proceeding of Conference on Computer and

Communication Systems, 1990, pp. 279–283.
[21] Y. Hamam, K.S. Hindi, Assignment of program tasks to processors: a simulated annealing approach, European Journal of

Operational Research 122 (2000) 509–513.
[22] F. Glover, Tabu search—Part I, ORSA Journal of Computing 1 (1989) 190–206.
[23] M. Dorigo, L. Gambardella, Ant colony system: a cooperative learning approach to the traveling salesman problem, IEEE

Transactions on Evolutionary Computation 1 (1997) 53–66.
[24] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, vol.

4, 1995, pp. 1942–1948.
[25] M. Clerc, J. Kennedy, The particle swarm explosion, stability, and convergence in a multidimensional complex space, IEEE

Transaction on Evolutionary Computation 6 (2002) 58–73.
[26] I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection, Information Processing Letters

85 (2003) 317–325.
[27] Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proceedings of the IEEE International Conference on Evolutionary

Computation, 1998, pp. 69–73.
[28] M. Clerc, The swarm and the queen: towards a deterministic and adaptive particle swarm optimization, in: Proceedings of the 1999

Congress on Evolutionary Computation, 1999, pp. 1951–1957.
[29] X.H. Wang, J.J. Li, Hybrid particle swarm optimization with simulated annealing, in: Proceedings of the 3rd International

Conference on Machine Learning and Cybernetics, Shanghai, vol. 4, 2004, pp. 2402–2405.
[30] H.J. Meng, P. Zheng, R.Y. Wu, X.J. Hao, Z. Xie, A hybrid particle swarm algorithm with embedded chaotic search, in: Proceedings

of the IEEE International Conference on Cybernetics and Intelligent Systems, Singapore, vol. 1, 2004, pp. 367–371.
[31] Y. Liu, Z. Qin, Z. Shi, Hybrid particle swarm optimizer with line search, in: Proceedings of the IEEE International Conference on

Systems, Man and Cybernetics, vol. 4, 2004, pp. 3751–3755.

	Multi-objective task allocation in distributed computing systems by hybrid particle swarm optimization
	Introduction
	Problem formulation
	Nomenclature
	Problem statement
	System cost
	System reliability
	Multi-objective formulation

	Proposed algorithm
	Review of particle swarm optimization
	Hybrid PSO for the multi-objective task allocation problem
	Particle representation
	Fitness function
	Particle movement
	Hybrid strategy

	Experimental results and discussion
	Dataset description
	Comparative performances
	Information gain
	Worst-case analysis

	Conclusions
	References

