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Abstract

In a distributed computing system, a number of program modules may need to be allocated to different processors such that the
reliability of executing successfully these modules is maximized and the constraints with limited resources are satisfied. The problem
of finding an optimal task allocation with maximum system reliability has been shown to be NP-hard; thus, existing approaches to find-
ing exact solutions are limited to the use in problems of small size. This paper presents a hybrid particle swarm optimization (HPSO)
algorithm for finding the near-optimal task allocation within reasonable time. The experimental results show that the HPSO is robust
against different problem size, task interaction density, and network topology. The proposed method is also more effective and efficient
than a genetic algorithm for the test-cases studied. The convergence and the worst-case characteristics of the HPSO are addressed using

both theoretical and empirical analysis.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The configuration of a distributed computing system
(DCS) involves a set of cooperating processors communi-
cating over the communication links. A distributed pro-
gram running in a DCS consists of several modules that
need to be allocated to the processors and inter-communi-
cate through the links for the completion of program
execution. To improve the performance of a DCS, several
issues arise such as the minimization of execution and com-
munication cost (Lee and Shin, 1997; Murthy, 1999; Ernst
et al., 2001), the maximization of system reliability and
safety (Kartik and Murthy, 1997; Srinivasan and Jha,
1999), and the achievement of better fault tolerance using
software and hardware redundancy (Kartik and Murthy,
1995; Hsieh, 2003). Meanwhile, resource constraints may
be imposed by memory size of processors and capacity of
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communication links. This paper investigates the task allo-
cation problem that aims to maximize the system reliability
subject to resource constraints.

Distributed system reliability (DSR) has been defined by
Kumar et al. (1986) as the probability for the successful
completion of distributed programs which requires that
all the allocated processors and involved communication
links are operational during the execution lifetime. There
are two major DSR evaluation approaches in the literature.
Kumar et al. (1986) evaluated the distributed program reli-
ability (DPR) by searching all of the minimal file spanning
trees (MFST’s), which provide accessibility to the required
data files for the program. Then the DSR can be computed
by multiplying the DPR’s of all distributed programs.
However, some system parameters such as the execution
times of programs and communication loads on the links
are not considered in this model. They assume that all pro-
cessors and communication links have constant reliability.
Shatz et al. (1992) proposed another DSR evaluation
model where failures from processors or communication
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links are time-dependent, which fits the scenario that mod-
ules with longer execution or communication times will
increase the failure probability of involved processors or
communication links.

Unfortunately, the computational complexity for evalu-
ating the DSR has been shown to be NP-hard (Lin and
Chen, 1997). Researchers, however, have developed alter-
native algorithms for tackling this problem. These methods
can be divided into two categories: exact algorithms and
approximation algorithms. The exact algorithms strive to
find an optimal task allocation for small-sized instances.
Kartik and Murthy (1997, 1995) used the idea of branch
and bound with underestimates and reorder the modules
according to module independence for reducing the com-
putations required. Verma and Tamhankar (1997)
employed the branch and bound technique for solving
the reliability-based multiple join problem in distributed
database management systems. The A* algorithm has also
been adopted for finding an optimal task allocation (Shatz
et al., 1992). The A* algorithm first converts the problem to
a state-space search tree and trims the tree by a lower-
bound estimation function such that the search space is
reduced. However, the worst-case complexity of the
A algorithm is exponential and it is limited to small
problems.

The approximation algorithms, on the other hand, derive
sub-optimal task allocations within reasonable times.
Kartik and Murthy (1997, 1995) also developed a heuristic
approach from their exact algorithm by assuming that the
best solution is more likely to be found in the least cost
path thereby reducing the worst-case time complexity of
the algorithm. Srinivasan and Jha (1999) proposed a clus-
tering-based heuristic which groups heavily communicating
modules into clusters in order to reduce the intermodule
communication (IMC) as much as possible. Genetic algo-
rithms (GAs) have also been adopted for solving the prob-
lem and obtained promising results. Vidyarthi and Tripathi
(2001) used a simple GA to maximize the reliability of DCS
with task allocation. Hsieh (2003) and Hsieh and Hsieh
(2003) proposed a hybrid GA that combines the GA with
a local search procedure. The experimental results show
that the hybrid GA produces better task allocation than
the simple GA.

GAs (Goldberg, 1989) belong to a branch of computa-
tional intelligence called metaheuristic. The development
of the metaheuristic optimization theory has been flourish-
ing during the last decade (Glover, 1989; Dorigo and Gam-
bardella, 1997; Kennedy and Eberhart, 1995). Applying
metaheuristic algorithms for conquering the task allocation
problem has several benefits. (1) Exact algorithms search
for optimal solutions and are thus computationally inten-
sive, while metaheuristic algorithms deriving near-optimal
solutions within reasonable times are more suitable for
real-time applications. (2) Many successful applications
(Shigenori et al., 2003) have shown the superiority of meta-
heuristic algorithms over heuristic algorithms in terms of
quality of the final solutions obtained, so that careful

design and implementation of the metaheuristic algorithms
can improve the results substantially.

In this paper, we present a particle swarm optimization
(PSO)-based algorithm for solving the task allocation
problem with the goal of maximizing the system reliability.
A hill-climbing heuristic is embedded in the PSO iteration
to expedite the convergence. The experimental results
reveal that the proposed hybrid PSO algorithm produces
better task allocation than a genetic algorithm on a large
set of simulated problem instances, and the difference is
larger for large problems.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the formulation of the task allocation
problem for maximizing reliability. Section 3 presents the
proposed hybrid PSO algorithm in detail. Section 4 reports
the comparative performance and convergence analysis.
Finally, Section 5 concludes this work.

2. Problem formulation
2.1. Notation

The notations used in problem formulation are listed in
Table 1.

2.2. Problem statement

We consider the task allocation problem with the fol-
lowing scenarios.

e The processors involved in the DCS are heterogeneous.
Hence, the processors may be constrained with various
units of memory and computation resources and they
may have different processing speeds and failure rates.
Moreover, the communication links may have differ-
ent bandwidths and failure rates. A communication

Table 1

Notations used in the problem formulation

Xik Decision variable: x; = 1 if module 7 is allocated
to processor k, and x; = 0 otherwise

n Number of processors

r Number of modules

Pk Processor k

Ly Communication link connecting p; and p,

Ak Failure rate of processor pj

Lieh Failure rate of communication link 7,

ek Incurred accumulative execution time (AET) if module
i is executed on processor k

i Incurred intermodule communication (IMC) cost between
modules i and j if they are executed on different processors

Wi Transmission rate of communication link 7,

m; Memory resource requirements of module / from its execution
processor

M;, Amount of memory resource capacitated with processor p;

S Computation resource requirements of module 7 from its
execution processor

Sk Amount of computation resource capacitated with processor py
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subsystem is assumed to handle the interprocessor com-
munication, and the communication can be performed
concurrently.

e The execution of a module will consume a specific
amount of memory and computation resource from its
assigned processor. Two modules, if executed on differ-
ent processors, may communicate with each other and
incur a specific amount of intermodule communication
(IMC) cost measured in some unit of data quantity.

e A module may take different accumulative execution
time (AET) if it is executed on different processors. An
amount of IMC cost may take different durations of
transmission time if transmitted through different com-
munication links.

e The state of processors and communication links is
either operational or down. Failure events are statisti-
cally independent.

The above assumptions are basically similar to those
presented by Shatz et al. (1992) from which several task
allocation techniques with reliability maximization have
been developed (Kartik and Murthy, 1997; Srinivasan
and Jha, 1999; Kartik and Murthy, 1995; Hsieh, 2003;
Verma and Tamhankar, 1997; Vidyarthi and Tripathi,
2001; Hsieh and Hsieh, 2003). We do not consider the
precedence constraints among task modules since the com-
ponent that fails during the idle period can be replaced by a
spare and will not affect system reliability. More deliber-
ated considerations towards a realistic task-scheduling
model can be found in Sinnen et al. (2006). They combine
the contention-aware scheduling and the involvement
scheduling where the former takes into account all resource
and precedence constraints and the latter accounts for the
execution time incurred by the processor involvement for
preparing and during the transfer of the communication.

Our problem is to search for an optimal task allocation
that maximizes the DSR and satisfies all of the resource
constraints. A task execution process in a DCS can be
described by the processor interaction graph (PIG) and
the task interaction graph (T1G). The PIG illustrates how
the processors are connected in the network topology of
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the computation environment. Fig. 1 gives some typical
examples of PIG, including linear, ladder, cross, tree, and
star, where the nodes indicate the processors and the edges
correspond to the communication links. The TIG renders
the intermodule communication cost incurred by the mis-
sion. Fig. 2 shows an example of a TIG where the inter-
module communication costs ¢; among five modules are
specified. An important characteristic of TIG is the rask
interaction density, denoted by d, which measures how
communication intensive a task is. We define d as the ratio
of the number of intermodule communication requests to
the number of pairs of different modules. As d increases,
the intermodule communication becomes more intensive
and the reliability derived could be lower due to involve-
ment of more communication links. Moreover, the CPU
time required will slightly increase with large d because of
the extra computations for the reliability related to those
involved communication links.

To evaluate the DSR for the successful completion of a
mission with a task allocation, we follow Shatz’s formula-
tion (Shatz et al., 1992) to compute the probability that all
involved components (processors and communication
links) are operational during the mission. Under a task
allocation X = {x;}1<i<r1<k<n» the reliability of processor
pi during a time interval ¢ follows the Poisson distribution,

Ri(X) = e o (%4 "and it reduces to e~ if we assume that
the processor failure rate 4, is constant during the mission.
Since the total elapsed time for executing the modules
assigned to py is > xxey, the corresponding processor
reliability can be computed by

Fig. 2. An example of TIG.

tree star

Fig. 1. An example of PIG.
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—k Z Xikeif
R(X)=e = . (1)
Similarly, the reliability for the communication link 7,
during a time interval 7 is Ry (X) = e ', Since the total
elapsed time for transmitting the intermodule communica-
tion cost via Iy is > >, 7éjxikxj,,(c,-j/wkb), the correspond-
ing communication link reliability is given by

—Hyp Z inkx/'h(ci//wkb)
Rkb(X) =¢ =it . (2)
As the system reliability requires that all involved com-
ponents are operational during the elapsed time for the exe-
cution, the DSR with the task allocation X is computed as
follows:

R(X) = ﬁmX) H T Ro(x). 3)

Maximizing the DSR is equivalent to minimizing the fol-
lowing cost,

COST(X) = i i AaXikeik
=1 =

3 Z Z Z#khxikij(cij/wkb). (4)

b>k =1 itj

+
k=

With the system resource constraints described in our
assumptions, the addressed task allocation problem is for-
mulated by the following 0-1 quadratic programming
problem:

Min COST(X), (5)
subject to Y xzp=1 Vi=12,...,r (6)
k=1
> maxg <M Vk=1.2,....n, (7)
i=1
Zs,-x,-kéSk Vk=1,2,...,n, (8)
i=1
xx € {0,1} Vi k. (9)

Constraint (6) states that each module should be assigned
to exactly one processor. Constraints (7) and (8) ensure
that the memory and computation resource capacity of
each processor is no less than the total amount of resource
requirements of all of its assigned modules. Constraint (9)
guarantees that x;; are binary variables.

The above formulation is a 0—1 programming problem
with a quadratic objective function and it is known to be
NP-hard (Lin and Chen, 1997). Solving the problem is
computationally prohibitive due to enormous computa-
tions. Although exact algorithms such as branch and
bound and A™ algorithms have been proposed, the worst-
case complexity is still exponential and they are limited
to small task allocation problems. An alternative is to find
approximate solutions efficiently using metaheuristics. In
this paper, we propose a hybrid PSO for this purpose.

3. Proposed algorithm

Particle swarm optimization (PSO) has been employed
to cope with the project scheduling (Zhang et al., 2006;
Zhang et al., 2005) and flow-shop scheduling (Tasgetiren
et al., 2004; Xia and Wu, 2005) problems, but not previ-
ously to the task allocation problem considered in this
paper. The project scheduling and flow-shop scheduling
problems focus in finding a permutation of project activi-
ties or jobs to be processed by a set of machines and the
permutation may be subject to precedence constraints.
The priority-based solution representation is usually
adopted to enumerate the permutation. While the task allo-
cation problem aims at finding an assignment of modules
to a set of processors subject to the resource constraints.
A new solution representation needs to be devised and
the infeasible solutions generated should be carefully
handled.

3.1. Particle swarm optimization

The particle swarm optimization (PSO) algorithm was
proposed by Kennedy and Eberhart (1995). It is inspired
by the behavior of bird flocking and fish schooling: a large
number of birds/fishes flock synchronously, change direc-
tion suddenly, scatter and regroup iteratively, and finally
perch on a target. The PSO algorithm mimics such interest-
ing behavior and serves as a function optimizer: a swarm of
particles/solutions are randomly initialized and each indi-
vidual improves by referring to the experience of its own
and that of the entire swarm. The swarm intelligence is
enriched along with the evolution of the particles and thus
the near-optimal solution can be found. The convergence
and parameterization aspects of the PSO are discussed in
Clerc and Kennedy (2002) and Trelea (2003). The attrac-
tiveness of the PSO includes the following features: natural
metaphor, stochastic move, adaptivity, and positive
feedback.

The principal components of the PSO are outlined as
follows.

o Particle representation: The particle is represented as a
vector of real random variables that characterize the
problem. Let the problem solution be described by r
variables, we denote the ith particle by P;=(p;,

P, .pir)" € R". Thus, each particle is a candidate solu-

tion to the optimization problem and it changes values

iteratively according to different forms of experiences.

Swarm: The PSO is a population-based searching para-

digm that explores the solution space by flying a number

of particles, called a swarm. The initial swarm is gener-
ated at random and the size of a swarm is usually kept
constant throughout iterations.

o Experience: The major feature of PSO is that it is an ele-
gant way of managing experiences. The swarm intelli-
gence is enriched by tallying the best experiences
observed by individuals and the entire swarm. The
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personal best experience is employed to update the glo-
bal experience, and the global experience is used in guid-
ing the flying of each particle. This is a positive feedback
process that increases the success rate in foraging for the
social system, or in the optimization language, it
increases the probability for targeting the optimal
solution.

e Stopping criterion: To obtain quality solution, we need
to run the PSO algorithm until it converges and the final
best solution found so far is output. Hence, a stopping
criterion that can identify the convergence behavior of
the algorithm is needed. The widely-used stopping crite-
ria for evolutionary algorithms are as follows: (1) the
algorithm is terminated after a fixed and sufficiently
large number of iterations, (2) if the number of experi-
enced iterations between two consecutive global best
solution improvements exceeds a fixed number, or (3)
if the last k improvements over the global best solution
are negligible. Practitioners can use either or combina-
tion of these criteria in accordance with their purposes
and applications.

3.2. PSO for the task allocation problem

In the following, we propose a PSO algorithm for
tackling the addressed task allocation problem described
in Section 2. Each component of the PSO is customized
to the problem. A hybrid approach that combines the
PSO and a heuristic is finally developed for expediting
the convergence speed.

3.2.1. Particle representation and initial swarm generation

Each particle should represent a solution for the task
allocation problem, i.e., we can obtain an instance of task
allocation from the particle representation directly or indi-
rectly. An intuitive representation of a particle could include
all decision variables, x;, Vi=1,2,....,r, Vk=1,2,....n,
however, this representation is not efficient since most of
the decision variables are equal to zero and Constraint
(6), which states that each module should be assigned to
exactly one processor, will make the modification of the
particle difficult.

Instead, we represent each particle with a vector of r ele-
ments, and each element is an integer value between 1 and
n. Fig. 3 shows an illustrative example for the ith particle
P;, which describes a task allocation that assigns five mod-
ules to three processors. For example, p;; = 1 means that
the fourth module is assigned to the first processor. For-
mally, p;;=k implies that x; =1 and x;=0, VI # k.
Our particle representation is 7 times more condensed than

Pi P Pis P Dis
P 2 3 1 1 3

Fig. 3. An example for the ith particle.

the intuitive representation of the particle, and Constraint
(6) is always satisfied during the modification of the particle
values.

The PSO approach generates randomly an initial swarm
of N particles, where N is the swarm size. These particle
vectors will be iteratively modified according to collective
experiences in order to improve their solution quality.

3.2.2. Fitness evaluation

The particles compete for the best solution during the
evolution according to a measure of solution quality, called
fitness, such that the swarm evolution is navigated towards
the optimal solution by the best particles. The original
objective function COST(X) of the problem measures the
merit of a given solution X according to the assumption
that this solution meets all the Constraints 6-9. However,
the value of COST(X) is discredited if the solution violates
at least one of the constraints, i.e., if the solution is infea-
sible. For the constraints directly related to the solution
representation, it is possible to design specific operations
for generating solutions that are always valid. For example,
Partially Matched Crossover (PMX) (Goldberg and Lingle,
1985) has been broadly used in GA to ensure that the
resulting solution represents a permutation because the
validity can be directly checked from the solution. How-
ever, for the TAP considered in this paper, Constraints
(7) and (8) are indirectly imposed on the solution, we need
to first compute the amount of consumed memory and
computation resource from the whole solution (all decision
variables), and then we are able to check the solution valid-
ity if the amount of consumed resource exceeds the capac-
ity. We have no knowledge about the validity until we have
completely generated the solution. Hence, it is very difficult
to devise an operation for always generating valid solutions
in this case. Alternatively, researchers have resorted to
designing penalty functions for decreasing the fitness of
invalid solutions, if yielded.

We have devised penalty functions to estimate the infea-
sibility of a particle solution. Since our particle representa-
tion indicates the index of the allocated processor of each
module in one element (see Fig. 3), the satisfaction of
Constraint (6) ensuring that each module is assigned to
exactly one processor is guaranteed. Furthermore, from
the formal definition of our particle representation, p;; = k
implies that x; = 1 and x; = 0, V/ # k, Constraint (9) stat-
ing that the decision variable x;; takes value of either 0 or 1
is also satisfied. Hence, the penalty functions estimating the
infeasibility of a particle solution are only related to Con-
straints (7) and (8), and they are defined as follows.

e Penalty function « for violating Constraint (7)

a(X) = z": max (0, im,—x,—k - Mk>.
=1 =1

The term max (0, Y, ;mxy — My) calculates the insuffi-
ciency amount of memory resource on processor k if the

(10)
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memory requirement incurred by all the running modules
allocated to processor k exceeds the memory capacity of
the processor. Otherwise, it returns zero. The penalty
function a(X) then sums the total insufficiency amounts
of memory over all available processors. Thus, the penalty
function gives proportional amount of penalties on the
infeasible solution whose requested memory resource
exceeds the system memory capacity. The more the mem-
ory insufficiency is, the greater the penalty is.
e Penalty function f for violating Constraint (8)

ﬁ(X):imax (O,is,-x,-k—Sk) (11)

Similarly, this function calculates the total insufficiency
amount of computation resource over all available
processors.

The penalty functions are then combined with the origi-
nal objective function in a weighed manner.

J(X) = COST(X) + 6,(X) + 6:8(X), (12)

where 0, and J, are the weights controlling the relative sig-
nificance of respective penalty functions. Those weights are
determined automatically in our method according to two
criteria. First, they should scale the possible values of a(X)
and S(X) to comparable ranges as that of COST(X) such
that the evolution trend will be influenced by the penalty in-
curred and move towards valid solutions and away from in-
valid ones. In our preliminary experiments, the value of
COST(X) is always below 1.0 during evolution. The ranges
of o(X) and f(X) can be estimated using a sufficient number
of solutions generated at random (we use 100 random solu-
tions), because once the evolution started, the values of o(X)
and f(X) decrease, and they become zero when the yielded
solution is valid. Second, the weights can be further tuned if
the decision-maker has different preference of respective
constraints. For example, if the memory resource is consid-
ered to be cheaper than the computation resource and can
be augmented if necessary, we may decrease the value of
01 and increase the value of d,. In this paper, we assume that
the two constraints have equal importance.

From the above discussions, we know that the larger the
value of J(X), the worse the quality of solution X is. Since
the fitness function measures the merit of the particle, we
define the fitness function as follows:

Fitness(X) = J(X) . (13)

3.2.3. Particle vector modification according to experiences

As described in Section 3.1, the swarm intelligence is
enriched by tallying the best experiences observed by indi-
vidual particles and the entire swarm during the evolution.
In particular, each particle remembers the best vector with
the highest fitness it visited so far, referred to as pbest, and
the best vector visited by its neighbors. There are two ver-
sions for keeping the neighbors’ best vector. In the local

version, each particle keeps track of the best vector lbest
attained by the particles within its local neighborhood
according to Euclidean distance in the solution space.
For the global version, the best vector gbest is determined
by any particles in the entire swarm.

The particle vector modification formula has several
variations (Kennedy and Eberhart, 1995; Clerc and Ken-
nedy, 2002; Trelea, 2003; Kennedy et al., 2001). Among
them, Clerc and Kennedy (2002) has proved that the use
of a constriction factor is needed to insure the convergence
of the algorithm. It proceeds as follows. At each evolution-
ary iteration, the ith particle modifies its velocity v; and
position p;; through each dimension j by referring to, with
random multipliers, the personal best experience (pbest;)
and the swarm’s best experience (gbest;) using Egs. (14)
and (15) as follows:

vy < Klvy + &yrand, (pbest,; — p;;) + &randy(ghest; — p;;)],
(14)
Pij < Py T Vi, (15)

where £, and &, are the cognitive coefficients and rand, and
rand, are random real numbers drawn from U(0,1). K is
the constriction coefficient and is given by

2

12— (& + &) - \/(51 + 52)2 —4(& + &)
st. &+ & >4 (16)

K:

Typically, setting & =& =2.05 is applicable to many
domains and K is thus 0.729.

It is observed from Egs. (14) and (15) that the particle
will fly through the solution space navigated by pbest;
and gbest while still exploring new areas by the stochastic
mechanism to escape from the barrier of local optimality.
Our algorithm is terminated with a given maximum num-
ber of iterations and the final solution delivered by gbest
is reported.

3.2.4. Hybrid PSO

Modern metaheuristic algorithms perform both the
exploitation and exploration search components in program
iterations. Exploration involves searching for new regions
in the solution space, and once it finds a good region
exploitation involves searching for local optima. For exam-
ple, genetic algorithms (Goldberg, 1989) employ selection
and crossover operators as exploitation search and muta-
tion operator as exploration search. The ant colony optimi-
zation (ACO) (Dorigo and Gambardella, 1997) also devises
visibility (exploration) and pheromone (exploitation) com-
ponents in one search framework. Analogously, the origi-
nal particle swarm optimization (PSO) (Kennedy et al.,
2001) also interweaves these two parts. The exploration
search of new possibilities is fulfilled by the cognitive coef-
ficients (¢; and &) and the randomness multipliers (rand,
and rand,), while the exploitation search is performed by
referring to best experiences (pbest and gbest) found so



730 P.-Y. Yin et al. | The Journal of Systems and Software 80 (2007) 724-735

far (see Eq. (14)). Higher values of coefficients and multipli-
ers will increase the oscillation frequency of particles. How-
ever, as the multipliers are generated at random, the
weighting between exploration and exploitation changes
at every iteration. There exists another PSO variation
(Coello Coello et al., 2004) which embeds the mutation
operator into the iterations to emphasize the explorative
behavior for solving the multi-objective optimization.
However, in our preliminary experiments, the addition of
the mutation operator into our PSO algorithm does not
significantly benefit the produced result. This is probably
because our task allocation problem is formulated as
single-objective optimization.

It has been shown in many applications that a hybrid
strategy that combines a metaheuristic algorithm with a
local heuristic can obtain a better result and converge more
quickly (Michalewicz and Fogel, 2002). Therefore, we
devise a parameter-wise hill-climbing heuristic for embed-
ding into the proposed PSO algorithm as follows. Given
a particle vector, its solution quality can be improved
locally by scanning the particle elements for updating. As
in our particle representation each particle consists of r ele-
ments and the value of each element ranges from 1 to n, we
sequentially scan each element and look for possible
replacement with other values if the particle fitness is
improved. When an element is examined, the values of
the remaining r — 1 elements remain unchanged. The heu-
ristic is terminated if all the elements of the particle have
been examined for updating. The computation for the fit-
ness value due to the element updating can be minimized
since a value change in one element affects the allocation
of exactly one module, we can save the fitness computation
by only recalculating the system reliability and constraint
conditions related to the reallocated module.

The proposed hybrid PSO algorithm (which shall be
referred to as HPSO) is summarized in Fig. 4. At the initial-
ization step, the algorithm prepares an initial swarm of N
particles and a set of initial velocities generated at random.

At the iteration step, all of the particles modify repeatedly
their vectors until a maximal number of iterations have
passed. During each iteration, the personal best and
swarm’s best vectors are identified. The particle then
adjusts its vector using Eqgs. (14) and (15) according to
the constriction factor model. To expedite the convergence
speed, all of the particles are further improved using the
parameter-wise hill-climbing heuristic before getting into
the next iteration.

4. Experimental results and discussion

To evaluate the efficiency and effectiveness of the
proposed algorithm, intensive experiments have been con-
ducted. A large simulation dataset is created which features
different problem size, task interaction density, and network
topology. The proposed algorithm is compared with a
genetic algorithm (GA), a heuristic approach, and an exact
method. All of the experiments are performed on a 2.4 GHz
PC with 256 MB RAM. Analysis of convergence and worst-
case issues is also presented.

4.1. Experimental scenarios

To assess the comparative performances of the proposed
HPSO algorithm with other algorithms, a large simulation
dataset is created. The dataset fits very much the real world
DCS by taking into account different numbers of proces-
sors (n) and modules (r), and different characteristics of
PIGs and TIGs. First, we set the value of (n,r) to be equal
to (6,8), (6,12), (7,9), (7,13), (8,10), (8,16), (9,11), and
(9,17), respectively, in order to testify the algorithm with
different problem sizes. Secondly, for each pair of (n,r),
we consider three different TIGs with various task interac-
tion density d equal to 0.3, 0.5, and 0.8. Thirdly, five types
of typical PIG topologies, namely linear, ladder, cross, tree,
and star, as shown in Fig. 1 are simulated. Therefore, there
are totally 8 x3x5=120 DCS instances in our testing

1. Initialize.

2.5 Update particle vectors using Eq. (15).

1.1 Generate an initial swarm of N particles at random.
1.2 Generate initial velocities v;, 1 <i<Nand 1 <j <r, at random.
2. Repeat until a given maximal number of iterations is achieved.
2.1 Evaluate the fitness of each particle using Eq. (13).
2.2 Determine the best vector pbest visited so far by each particle.
2.3 Determine the best vector gbest visited so far by the whole swarm.

2.4 Update velocities v; using Eq. (14) according to the constriction factor model.

2.6 Improve the solution quality of each particle using the parameter-wise hill-climbing heuristic.

Fig. 4. Summary of the HPSO algorithm.
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Table 2
System parameters and the corresponding testing ranges

System parameters Testing ranges

0.00005,0.00010]
0.00015,0.00030]

Failure rate of processor
Failure rate of communication link

[

[
Accumulative execution time (AET) [15,25]
Intermodule communication (IMC) cost [15,25]
Memory resource requirement [1,60]
Computation resource requirement [1,60]
Memory resource capacity [100,200]
Computation resource capacity [100,200]

dataset that assess deliberately the performance of compet-
ing algorithms against different problem size, task interac-
tion density, and network topology. The values of other
system parameters are generated randomly with the ranges
listed in Table 2.

4.2. Comparative performances

To evaluate the efficiency and effectiveness of the pro-
posed HPSO algorithm, we have implemented an exact
method, a heuristic approach, and an approximation
method. The exact method solves the 0-1 quadratic
programming problem as given in Egs. (5)—(9) using the
commercial Lingo software package (Lingo System). When
Lingo fails to solve the problem instance within 24 h, it is
terminated with an infeasible solution or an unknown sta-
tus and we discard such cases for further comparison. The
heuristic approach developed from Kartik and Murthy
(1997) reorders the modules in a way that the last » mod-
ules do not communicate with one another, i.c., they are
communication-independent. Then, a state-space tree is
established to enumerate the allocations of modules. At
each level of the tree, the allocation of the module from
the ordered list is enumerated and the node with the least
cost estimated is chosen to expand next. We implemented
this heuristic approach because it has been shown to be
superior to several other heuristics (Kartik and Murthy,
1997).

The approximation method is developed from a GA
which uses the same coding scheme (see Fig. 3) and fitness
function (see Eq. (13)) as in the HPSO. The GA evolves
with a population of 80 chromosomes and the crossover
and mutation rates are set as 0.7 and 0.1, respectively.
These GA parameter values are determined experimentally
with the following ranges. The population size varies from
1 to 100 with increment of 20. The crossover and mutation
rates are both tested within (0, 1) with increment of 0.1. The
number of fitness evaluations until termination is set to be
80,000 according to the observation that GA can converge
and reach stagnation before this number of fitness evalua-
tions in all of the experiments.

In all our experiments, we terminate HPSO and GA
when they have experienced 80,000 times of fitness evalua-
tions because we want to assess the comparative perfor-
mance of the two algorithms, we need to fix one

performance measure (the consumed computational time)
and compare the other (the derived system reliability). Fur-
thermore, both HPSO and GA are stochastic-based algo-
rithms and each independent run of the same algorithm
on a particular problem instance may yield a different
result, we thus report the average reliability and computa-
tional time over 10 independent runs for the two
algorithms.

From the intensive experiments we find that the network
topology does not have measurable impact on the results,
we thus only tabulate the detailed computational results
for one topology and then provide the overall statistics.
Table 3 shows the distributed system reliability (DSR)
and the computational time (7) obtained using different
algorithms tested on the tree topology. The approximation
rate (@) defined as the approximation reliability divided by
the optimal reliability is also provided for a quick glance of
how close the approximation methods converge to the
exact solutions. From the results, we have the following
observations:

Efficiency: The CPU times used by Lingo for deriving
the exact optimal reliability grow rapidly with the problem
complexity depending on the parameters (m,r,d). This
limits the applicability of Lingo to problems of small size.
For all the 120 problem instances of various network topol-
ogies in our dataset, Lingo fails to solve 47 problems when
the CPU times used have exceeded 24 h, indicating the need
for heuristic or metaheuristic algorithms which can derive
approximation solutions to large problems within reason-
able times. As can be seen from Table 3, the CPU times
consumed by HPSO and GA for obtaining near-optimal
reliability ranges from 1.4 to 22.8 s for all tested problem
sizes, the computational saving compared with that of
Lingo is remarkable. Moreover, the HPSO always con-
sumes less CPU time than GA, although both algorithms
are set to run for the same number of fitness evaluations.
This is because in the embedded heuristic of the HPSO,
the computation for fitness value can be expedited by cal-
culating only the system reliability and constraint condi-
tions related to the reallocated module. Furthermore,
the heuristic developed from Kartik and Murthy (1997) is
the fastest method among all competing algorithms. The
CPU times required ranges from 0.02 to 0.06 s. However,
the DSR derived is not satisfactory as the problem size
increases.

Effectiveness: Compared with Lingo, the HPSO and GA
can maximize the reliability as much as possible through
evolutionary computation. The approximation rate (&) of
the reliability obtained by the HPSO to the exact optimal
reliability ranges from 99.52% to 100.0%, while it is
between 96.10% and 100.0% for the GA, indicating that
the HPSO is more effective than the GA on the test-cases
studied. The experimental results for other network topol-
ogies also support this claim. Moreover, the HPSO algo-
rithm obtains the exact optimal reliability for 22 out of
the 120 tested problem instances, which is 18.3% from
the dataset, while the GA finds exact optimal reliability
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Table 3
The reliability, approximation rate and computational time obtained using different algorithms tested on the tree network topology
n r d HPSO GA Kartik and Murthy (1997) LINGO
DSR D (%) t DSR D (%) t DSR D (%) t DSR t
6 8 0.3 0.982 99.97 1.6 0.982 99.95 11.8 0.942 95.82 0.04 0.983 29
0.5 0.981 100.00 1.6 0.980 99.91 11.6 0.911 92.88 0.03 0.981 65
0.8 0.970 99.97 1.4 0.970 99.97 12.7 0.855 88.12 0.06 0.971 56
12 0.3 0.964 99.54 32 0.953 98.38 14.4 0.864 89.23 0.05 0.969 494
0.5 0.926 99.59 34 0.917 98.70 15.2 0.759 81.69 0.04 0.929 7186
0.8 0.939 100.00 3.6 0.933 99.36 14.8 0.676 71.98 0.04 0.939 779
7 9 0.3 0.985 100.00 2.2 0.985 100.00 12 0.922 93.56 0.03 0.985 125
0.5 0.985 99.95 2.4 0.985 99.95 12.2 0918 93.17 0.05 0.985 43
0.8 0.948 100.00 2.6 0.948 99.97 12.6 0.820 86.44 0.04 0.948 575
13 0.3 0.971 NA 4.6 0.963 NA 15.2 0.933 NA 0.05 NA NA
0.5 0.917 NA 4.8 0.892 NA 15.6 0.784 NA 0.06 NA NA
0.8 0.863 NA 5.2 0.806 NA 16.4 0.578 NA 0.02 NA NA
8 10 0.3 0.986 99.98 3.4 0.985 99.86 13 0.900 91.25 0.03 0.986 812
0.5 0.972 99.80 3.4 0.970 99.54 13.2 0.869 89.23 0.05 0.974 1830
0.8 0.903 99.52 3.6 0.889 97.96 14.4 0.699 77.08 0.06 0.907 29000
16 0.3 0914 NA 8.8 0.880 NA 18.6 0.767 NA 0.05 NA NA
0.5 0.904 NA 9.6 0.873 NA 19.6 0.712 NA 0.05 NA NA
0.8 0.825 NA 10.8 0.708 NA 20.8 0.308 NA 0.02 NA NA
9 11 0.3 0.978 99.94 5.2 0.976 99.69 14.8 0.916 93.61 0.05 0.979 1850
0.5 0.967 99.58 5.4 0.943 97.18 15.2 0.849 87.40 0.02 0.971 6391
0.8 0.915 99.77 5.8 0.881 96.10 16 0.543 59.22 0.04 0.917 30457
17 0.3 0.895 NA 12.8 0.846 NA 20.8 0.679 NA 0.05 NA NA
0.5 0.822 NA 13.2 0.749 NA 21.2 0.547 NA 0.05 NA NA
0.8 0.692 NA 144 0.576 NA 22.8 0.337 NA 0.05 NA NA

NA: not available.

for 10 out of 120 problem instances, which is less than half
of the hit ratio achieved by the HPSO. For all problems in
the dataset, the reliability obtained by the HPSO is always
higher or equal to that derived by the GA. As for the heu-
ristic developed from Kartik and Murthy (1997), although
it is the fastest method among all the competing algo-
rithms, the DSR derived is always lower than that obtained
by the HPSO and GA, and the difference becomes larger
with increasing problem size. The approximation rate (®)
ranges from 59.22% to 95.82%, which is also significantly
lower than that obtained by the HPSO and GA.

Table 4 gives some overall statistics that characterize the
metaheuristics. The means and standard deviations on reli-
ability and computational time are reported. As can be

seen, when the task interaction density d increases, the
intermodule communication becomes more intensive and
the reliability derived by the HPSO and GA could be lower
due to involvement of more communication links. More-
over, the CPU time required increases slightly with large
d because of the extra computations for the reliability
related to the communication links involved. On the other
hand, the HPSO is more stable on the reliability produced
for the five tested topologies. From the overall statistics, we
see that the standard deviation for all independent runs of
the HPSO is 0.064, while it is 0.092 for the GA, and the dif-
ference on the overall mean reliability is more than 2.2%.

In summary, the proposed HPSO algorithm is effective
because it can derive exact optimal solutions for 18.3% of

Table 4
The means and standard deviations on reliability and computational time
Statistics HPSO GA

Reliability CPU time Reliability CPU time

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.
d=03 0.95964 0.028 7.0 4.321 0.94682 0.043 23.0 5.353
d=0.5 0.93085 0.061 7.2 4.511 0.91044 0.086 239 5.643
d=0.38 0.88886 0.079 7.8 5.048 0.85358 0.116 24.4 5.761
Linear 0.92652 0.073 7.2 3.659 0.90213 0.099 27.9 5.907
Ladder 0.92525 0.070 9.1 6.117 0.89976 0.103 234 6.747
Cross 0.93163 0.059 9.3 5.335 0.90994 0.084 25.9 6.194
Tree 0.92525 0.070 5.5 3.907 0.89961 0.102 15.6 3.314
Star 0.92361 0.070 5.6 3.890 0.90662 0.089 25.9 6.664
Overall 0.92645 0.064 7.3 4.444 0.90361 0.092 23.7 5.373
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the dataset and the overall approximation rate is very high
and stable against different DCS scenarios. The HPSO is
also efficient because it reports the results in just a few sec-
onds, while Lingo fails to solve almost 40% of the dataset
within reasonable time.

4.3. Convergence analysis

The convergence analysis of the HPSO algorithm should
rely on the entire swarm not just on a lucky particle. The
particles are inter-communicated by sharing their best
experiences, which makes the main feature of PSO different
from the random walk. Hence, we examine whether all the
personal best experiences evolve to the same target and
finally obtain a high-quality solution.

We use the information entropy for measuring the simi-
larity among all pbest experiences as the evolution pro-
ceeds. Let probjs) be the probability that a pbest assigns
the jth module to the sth processor, viz.

prob,(s) = Pr{pbest;; = sli = 1,2,...,N},
Vs=1,2,...,n. (17)

The information entropy over the probability distributions
probs), s=1,2,...,n, is given by

W, == prob,(s)log,(prob,(s)). (18)

s=1

¥, describes the degree of consensus over all pbest for the
decision on the allocation of the jth module. To provide
an overall measure, we compute the average particle entro-
py as

Y= i‘l’j/r. (19)

The smaller the value of P, the higher the degree of consen-
sus among all pbest is.

Fig. 5 shows the variations of the average particle entropy
() during the HPSO evolution. We observe that during the
first 20,000 fitness evaluations, the entropy value decreases
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Fig. 5. The particle entropy (¥) over all pbest versus the number of fitness
evaluations.

rapidly. This is because at the early evolution stage, the par-
ticles widely explore the possible allocation of each module
and share their best experiences. The particles are quickly
resorting to the good-quality regions in the solution space,
thus resulting in a fast decreasing rate for ¥ at this stage.
During the period between 20,000 and 50,000 fitness evalu-
ations, the particles exploit the neighboring solutions
around the good-quality regions, only few elements of the
particle will be updated since most elements of pbest are
identical to that of ghest. Hence, the decreasing rate for ¥
becomes gentle at this stage. After 50,000 fitness evaluations,
the particles are more similar to one another, the decrement
of ¥ almost stagnates. We conclude from Fig. 5 that all pbest
are resorting to the same target as the algorithm proceeds
due to the collective awareness from the entire swarm
instead of the movement of a lucky particle.

4.4. Worst-case analysis

Since the HPSO is a stochastic algorithm, each separate
run of the program could yield a different result. We still
need to argue that the high-quality solution delivered by
the algorithm is not due to a lucky run, but a consequence
of the evolution. The worst-case analysis, which is set up as
the worst optimal solution we could get after a specific
number of repetitive runs of the HPSO, can provide a good
argument. Fig. 6 shows the worst-case analysis where the
HPSO is executed for 1000 times on a problem instance
from the tree topology network where (n,r,d)=
(8,10,0.8). We observe that the HPSO can derive a task
allocation with system reliability higher than 0.90 (the opti-
mal reliability is 0.907375 as shown in Table 3) after 65
repetitive runs of the proposed algorithm in the worst case.
However, in the general case, the HPSO is likely to derive
such a good solution with much fewer runs, because the
probability that each separate run of the HPSO will obtain
a solution with reliability higher than 0.90 is 93.5% (esti-
mated by 1 — 65/1000). Therefore, the high-quality solu-
tion delivered by the algorithm is not due to a lucky run,
but a consequence of the evolution.

0.892 1 1 1 1 1 L 1 1 1
= (=1 < (=3 (=2 < = (=] > (=2 =)
S =1 S = S =) =3 S
- xR = i v = * =Y =
—

o
Number of repetitions

Fig. 6. The worst-case analysis versus the number of repetitive runs of
HPSO.
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Fig. 7. The reliability values obtained from repetitive runs of HPSO
follow a quasi-normal distribution.

We also observe that the reliability values obtained by
those repetitive runs follow a quasi-normal distribution with
mean and standard deviation equal to 0.9038 and 0.0019
respectively (see Fig. 7). Those reliability values are very
close to the exact optimal reliability (0.907375) and are sig-
nificantly higher than the mean reliability (0.888874)
obtained by the GA. Thus, we can justify that the proposed
HPSO algorithm has good control over the evolution
process and does not suffer premature convergence.

5. Conclusions

In this paper, we have proposed a hybrid particle swarm
optimization (HPSO) algorithm which maximizes the dis-
tributed system reliability (DSR) of executing successfully
a task consisting of several modules. The HPSO initializes
a swarm of particles each of which corresponds to a candi-
date solution to the underlying problem. These particles
employ their personal best experience to update the swarm
experience, and the swarm experience is used in guiding the
flying of each particle. This is a positive feedback process
such that the fitness of particles is improved. Penalty func-
tions tailored to the system constraints are devised in order
to deal with infeasible solutions. The HPSO embeds a local
search heuristic into the evolutionary iterations for expedit-
ing the convergence. The experimental results manifest that
the HPSO reports quality solutions on a large set of simu-
lated instances involving different problem sizes, task inter-
action densities, and network topologies. The proposed
method is also more effective and efficient than a genetic
algorithm on the tested dataset. The convergence and the
worst-case analyses of the HPSO have been theoretically
and empirically conducted.
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